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Chapter 1





Introduction

This thesis consists of three research papers that contribute to the

empirical energy �nance literature. The �rst paper investigates the

interdependencies between the electrical power, natural gas, coal, and

carbon emission allowances in the German energy market, with a par-

ticular focus on volatility spillovers. Building on the results from the

�rst paper, the second paper develops a comprehensive analysis of

the transmission of independent shocks from the gas, coal, and car-

bon markets to the power market. The third paper explores the joint

evolution of power price, outdoor temperature, and hydrological bal-

ance in the Nordic energy market. The common denominator for all

papers is the multivariate modelling approach, placing the electricity

market at the core and delving into its interdependencies on funda-

mentally related markets.

The thesis contains empirical results of interest to energy market

participants and which are discussed with reference to the develop-

ments in the underlying markets. However, the thesis is as related to

multivariate modelling as it is to energy markets. The �rst paper fea-

tures an extensive model selection procedure based on six conditional

covariance model speci�cations and seven distributional assumptions

for the error terms. In the second paper, we employ the recently de-

veloped concept of a volatility impulse response function, and suggest

our own method of normalizing it, which facilitates the interpreta-

tion and comparability of the results. In the third paper, we also

address simulations from the suggested model and illustrate a poten-

tial application in meteorological scenario analysis. Further, in all

of the papers, we deviate from the traditional normality assumption

for the error terms and utilize a �exible skew-Student distribution, as

Bauwens and Laurent (2002, 2005) propose. A simulation exercise in

the third paper demonstrates the bene�ts of using a distribution that
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Chapter 1

can accommodate the non-Gaussian properties of both energy prices

and meteorological data series.

The rest of the introductory chapter is organized as follows. Sec-

tion 1 discusses the recent trends in the European energy markets,

revealing the importance of the multivariate modelling framework.

Section 2 provides an overview of the existing approaches to mod-

elling the price of electricity, which is the core energy commodity in

this thesis. Section 3 summarizes the research papers and outlines

the main results.

1 Winds of change: The evolution of the Eu-

ropean energy markets

Over the past two decades, we have witnessed the European electric-

ity and natural gas markets transform from the paradigm of vertical

integration into liberalized competitive structures. This led to the

establishment of energy exchanges, such as the Nord Pool, the Eu-

ropean Energy Exchange, the Amsterdam Power Exchange, and so

on, where electrical power and other energy commodities are traded,

both for physical delivery and for �nancial settlement. While the

process of deregulation and the subsequent formation of competitive

energy markets is over in most European countries, new trends have

emerged, which yet again challenge the established market model and

are reshaping the energy landscape.

The most profound trend is the growing reliance on renewable

power generation sources, such as hydro, wind, solar, and biomass.

Renewable generation accounted for almost 30% of electricity demand

in Europe in 2015, up from 17% in 2008. Increases in the installed

renewable capacity, o�ering power generation at the lowest marginal

cost and subsidized by governments, undermined the competitiveness

of thermal generation and eroded the credit quality of many utilities.
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1 Winds of change: The evolution of the European energy markets

Many fossil-fuel power plants have become unpro�table over the re-

cent years due to low loads. In addition to decreasing the overall mean

level of power prices, renewables also signi�cantly a�ected intraday

pro�les, leading to lower peak prices and higher volatility. Despite

their major bene�t of environmental friendliness, most renewable en-

ergy sources are highly intermittent in nature, which creates a lot

of uncertainty in production planning. Therefore, many European

countries are considering the introduction of capacity payments to

incentivize thermal generators to remain online and secure the power

supply when the sun is not shining or the wind is not blowing. The

increased reliance on intermittent generation capacity will inevitably

lead to a greater risk of supply disruptions and more frequent oc-

currences of extreme price movements. However, whether we like it

or not, renewables are here to stay and we will see further changes

in the coming years as the markets adapt to the new paradigm and

learn how to make di�erent generation technologies co-exist rather

than compete.

One way to adapt is to increase the interconnections between na-

tional electricity markets, leading to more e�cient power plant dis-

patch and supply stability. The Nordic electricity market, encompass-

ing Denmark, Norway, Sweden, Finland, Latvia, Lithuania, and Es-

tonia, is already highly interconnected, with a common system power

price and actual area prices coinciding most of the time. Denmark, for

instance, has signi�cant wind capacity, and bene�ts from the oppor-

tunity to export the surplus wind power on windy days, and import

power during calm periods. Norway, on the other hand, has plenty of

hydrological generation capacity, which can be partially stored in wa-

ter reservoirs. Due to the common market, other Nordic countries can

take advantage of Norway's extra hydro capacity. There is currently

potential for increasing the interconnections between Italy and the

rest of the Europe, and between the United Kingdom and continen-
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Chapter 1

tal Europe, where the largest power price di�erentials are observed.

In addition, the Nordic market, with the lowest prices, can become

more connected to neighbouring markets such as Germany. Despite

the fact that connection presents signi�cant regulatory, political, and

technological challenges, the European Commission is promoting the

creation of a fully integrated European power network.

Apart from interconnectivity between regional markets, we also

observe the growing interdependencies between types of energy. Until

the past decade, there was little substitution between di�erent energy

sources. For example, oil has traditionally dominated as a transporta-

tion fuel. Nowadays, however, natural gas is increasingly considered

as an alternative, and electric cars are becoming more accessible. En-

ergy markets are less segregated, resulting in developments in one

speci�c market (e.g., price shocks, regulatory changes, technological

advances) that have far-reaching implications for other markets.

Finally, technological progress is reshaping both supply and de-

mand in the energy markets. On the one hand, we see the wide spread

of energy e�cient technologies, ensuring that the growing demand can

be met at a lower energy expense rate. On the supply side, power stor-

age solutions are being developed. The exploration of unconventional

sources of oil and gas (such as tight and shale) and cost-minimizing in-

novations in the extraction process prevent the prices of conventional

oil and gas from rallying as a result of scarcity. While the exploration

of shale oil and gas is more relevant for the U.S. market, it took a toll

on the shift to greater power generation using coal in Europe, where

the surplus U.S. coal has been exported in recent years.

To thrive in an environment of interconnected markets, energy

market participants have to understand their exposure to a higher

number of risk factors and potential scenarios than ever. This high-

lights the relevance of the multivariate modelling approach. As the

interconnectivity between the energy markets strengthens, consider-
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2 Approaches to electricity price modelling

ing them in a system is becoming a necessity rather than an advantage

in many practical applications, from production planning and capital

allocation decisions to risk management.

2 Approaches to electricity price modelling

The literature on electricity price modelling generally follows one of

two approaches: reduced-form modelling and structural modelling.

Reduced-form models are concerned with capturing essential em-

pirical properties while keeping the underlying risk factors unidenti-

�ed. These can be further categorized into continuous time models

and discrete time models. Continuous time models are mathemati-

cally elegant, and in many cases o�er closed-form solutions for pricing

and hedging derivative assets. The classical continuous time model

for the spot dynamics of commodity prices is the one-factor Schwartz

model (see Schwartz, 1997). This model, based on the exponential of

the Ornstein-Uhlenbeck process, was extended to a two-factor model

that Lucia and Schwartz (2002) applied to electricity prices. In addi-

tion to the short-run mean-reverting component, the two-factor model

contains a long-run non-stationary component. Originally, the driv-

ing noise for both components was assumed to be a Brownian motion.

Further, multi-factor jump-di�usion models were developed based on

a more general family of stochastic processes with stationary indepen-

dent increments, called Levy processes (see, e.g., Benth et al., 2007;

Meyer-Brandis and Tankov, 2007).1 Continuous time models are well

suited for analytical derivations and derivatives pricing. However,

they require discretization to be estimated since the data are always

observed at discrete time points. Therefore, unless the primary ap-

plication of a model is derivatives pricing, it often makes sense to

1See Benth, �altyt
e-Benth and Koekebakker (2008) for a rigorous introduction to
the reduced-form stochastic modelling of electricity and related markets.
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Chapter 1

specify the dynamics in discrete time to begin with. Discrete time

models aim to capture the stylized properties of electricity prices by

�tting their conditional mean and conditional variance processes. The

former is typically based on the autoregressive integrated moving av-

erage methodology of Box and Jenkins (1970), while the latter builds

on the seminal papers by Engle (1982) and Bollerslev (1986). While

being less elegant, the time-series models are easier to augment with

additional features, more straightforward to estimate, and useful in

many practical applications, such as value-at-risk estimations, short-

term forecasting, and scenario analysis.

Whether continuous or discrete, reduced-form models strive for

mathematical tractability and practical convenience, and are not con-

cerned with identifying the fundamental sources of randomness un-

derlying the stochastic processes. However, electricity is a physical

commodity fundamentally linked via production and consumption to

a set of known and observed factors. The wide availability of sup-

ply and demand data that provides insights into the movements of

power prices led to the development of the structural modelling ap-

proach. Structural models are concerned with the fundamentals of

supply and demand, with prices resulting from equilibrium consider-

ations. The �rst structural model for spot power prices was suggested

in Barlow (2002). It featured a vertical demand curve, representing

price inelasticity, and a supply curve given by a non-linear function

of a mean-reverting process, which captured the evolution of demand

over time. This simple approach later accounted for price relationship

among multiple fuels, available generation capacity, and other funda-

mental factors.2 Structural models adapt easily to changing market

conditions and appeal by their realism, while still allowing for closed-

form forward prices in some cases. On the other hand, they tend

2See Carmona and Coulon (2013) for a detailed survey of structural models for
power prices.
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3 Summary of the thesis

to become complicated faster than reduced-form models once addi-

tional factors are considered, and typically contain a large number of

parameters.

This thesis adopts the reduced-form discrete time modelling ap-

proach. However, the multivariate setting enables us to utilize the fun-

damental information in the spirit of structural modelling. Reduced-

form or structural, continuous time or discrete, all models, are by

de�nition imperfect simulations of reality. There is always a trade-o�

between complexity and realism, between bias and e�ciency, between

generality and speci�city. When it comes to research, there is no one-

size-�ts-all answer. The only universal truth is that every model has

its limitations, and good researchers understand the limitations of

their models. To quote Box and Draper (1987) in their discussion

on empirical model building, �Essentially, all models are wrong, but

some are useful�.

3 Summary of the thesis

The rest of the thesis is organized into three chapters that present the

research papers.

In Chapter 2, Modelling Cross-Commodity Interdependencies in

Volatility: A Case Study of the German Energy Markets, we focus on

multivariate modelling of the return series on electrical power, natural

gas, coal, and carbon emission allowances. Our sample comprises the

nearest delivery yearly futures contracts and covers the beginning of

2008 to the beginning of 2014. In order to perform the analysis in a re-

liable and statistically robust way, we employ a vector autoregressive

(VAR) system coupled with time-varying volatilities and correlations,

as captured by a relatively general Baba-Engle-Kraft-Kroner (BEKK)

speci�cation. In addition, we make use of the �exible skew-Student

distribution proposed in Bauwens and Laurent (2002, 2005), moti-
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Chapter 1

vated by the distinct non-Gaussian properties of the energy return

series. Within this model framework, we perform an extensive model

selection procedure. The likelihood ratio tests indicate that account-

ing for cross-commodity e�ects in second moments, as well as the

asymmetric e�ects of positive and negative shocks on future volatil-

ity, leads to a statistically signi�cant improvement in the likelihood

value. Our preferred distributional speci�cation features individual

skewness parameters for the four commodities, and a common degrees

of freedom parameter. We con�rm the existence of volatility spillover

e�ects to the power market from all other markets, with the most eco-

nomically signi�cant e�ect coming from the coal market. This result

is consistent with coal's larger share in the German power generation

mix during the sample period and its higher pro�tability compared

to gas. Overall, coal is the driving commodity in terms of volatility in

our system because we �nd plenty of spillover e�ects channelling from

the coal market and none channelling to it. Analysis of the estimated

conditional correlations reveals a decrease in co-movement between

power and fossil fuels, which can be related to the on-going structural

shift from carbon-intensive to renewable generation technologies.

In Chapter 3, Volatility Transmission in the German Energy Mar-

kets: A Variance Impulse Response Analysis, we investigate the trans-

mission of volatility on a deeper level, building on the results of the

previous study. We analyse the impact of large exogenous shocks in

gas, coal, and carbon on the expected variance of power at di�erent

horizons using the volatility impulse response function methodology

introduced in Hafner and Herwartz (2006). The results indicate that

volatility spillover e�ects show large variations across commodities

and over time. Spillovers from coal are substantial throughout the

sample period; however, with signi�cant variation on a daily basis.

Spillovers from gas are generally weaker, although more persistent,

and decrease during the latter part of our sample. Spillovers from

8



carbon show the fastest decay and are economically non-signi�cant

until around 2011. We �nd that positive news (price increases) in gas

and coal lead to much larger responses in the expected variance of

power than negative news (price decreases). Distinguishing between

the e�ects of positive and negative news is less important for the car-

bon market. Finally, benchmarking the magnitude of the responses in

power variance against the responses in own-market variance reveals

the non-trivial size of cross-market e�ects.

In Chapter 4, Joint Modelling of Power Price, Temperature, and

Hydrological Balance with a View towards Scenario Analysis, we pro-

pose a model for the joint evolution of spot power price, outdoor tem-

perature, and hydrological balance. Temperature is a major demand-

side factor a�ecting power prices, while hydrobalance is a major supply-

side factor in energy markets with a dominant share of hydrological

power generation, such as the Nordic market. Our time series mod-

elling approach coupled with the skew-Student distribution allows for

interrelations in both mean and volatility, and accommodates most

of the discovered empirical features, such as periodic patterns and

long memory. We �nd that in the Nordic market, the relationship

between temperature and power price is driven by the demand for

heating, while the cooling e�ect during summer months does not ex-

ist, likely due to mild climate conditions. Hydrobalance, on the other

hand, negatively a�ects power prices throughout the year, since in

dry hydrological conditions a larger share of demand has to be cov-

ered by higher marginal cost generation sources. Further, we con�rm

the existence of volatility spillover e�ects from temperature and hy-

drobalance to power. We illustrate how the proposed model can be

used to generate a variety of meteorological scenarios and analyse the

implications for power prices.
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Modelling Cross-Commodity

Interdependencies in Volatility: A

Case Study of the German

Energy Markets

Abstract

This study investigates the interdependencies in volatilities of the
returns on electrical power, natural gas, coal, and carbon emission
allowances in the German energy markets. These commodities are
physically linked through the electricity production process, and are
natural to consider as a system. We pay special attention to selecting
an appropriate econometric volatility model within the VAR-BEKK
framework, coupled with a �exible skew-Student distribution for the
error terms. The results indicate the existence of volatility spillover
e�ects to the power market from all other markets, with the largest
in magnitude e�ect coming from the coal market. In addition, we
observe a decreasing trend in the correlations between power and
fossil fuels. We interpret our results in terms of the fundamental
developments in energy markets during the sample period from 2008
to 2013, particularly the changes in spark and dark spreads and in
the actual generation mix.

Keywords: energy forward markets, volatility spillovers, skew-Student
asymmetric BEKK
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Chapter 2

1 Introduction

In this study, we examine a multivariate model of the return series of

electrical power, natural gas, coal, and carbon (CO2) in the German

markets. These commodities are connected through the production

process. The prices of input fuels, namely gas and coal, constitute the

main portion of the variable costs of producing electricity. Because

using gas or coal to produce electricity is associated with carbon emis-

sions, the price of these emissions also enters the cost side of electricity

generation. The spread between the power price and the generation

cost de�nes the producer's gross margin. For more than a decade, the

spark and dark spreads have stood out as dominant spreads in the

European power markets because they correspond to the payo�s of

standard gas- and coal-�red production units, respectively. Indeed,

they drive power plant pro�tability, and further serve as indicators

that provide incentives for agents in the energy sector to invest in

future production capacity. For these reasons, it is of fundamental

importance that energy companies and policymakers understand how

the cost side of price spreads impacts electricity prices. Here, we fo-

cus on the German power market because it is an excellent example

of a liquid and increasingly transparent energy market. Germany is

Europe's largest power market, and relevant price data for power and

fuels (for German production units) are reliable and publicly available

from the European Energy Exchange (EEX).

The interrelations between a set of commodities can manifest in

�rst-order moments (expected returns), and in second-order moments,

a�ecting both volatilities and correlations. In this study, we employ

a multivariate cross-commodity model for the returns on power, gas,

coal, and carbon.

There is a growing body of literature on the interrelations be-

tween di�erent energy commodities. A common approach in previous
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research has been to employ methods of co-integration in order to

investigate �rst-order interrelations between di�erent prices. For ex-

ample, Gjolberg and Johnsen (1999) study crude oil prices. Casassus,

Liu, and Tang (2013) provide empirical evidence of co-integration

between several petroleum-related markets. A comparable study of

electricity markets is that of De Vany and Walls (1999), who test for

co-integration in 11 regional power spot prices in the U.S. market.

All studies mentioned so far are concerned with �rst-moment in-

terrelations. While second-order interrelations have been extensively

studied in the context of equity markets, there is relatively little re-

search related to energy markets. Lin and Tamvakis (2001), E�mova

and Serletis (2014), and Karali and Ramirez (2014) examine second-

order interrelations in di�erent segments of the U.S. oil and gas mar-

kets. Interrelations between crude oil and various other commodities

in the European markets are investigated in Reboredo (2014) and Liu

and Chen (2013). Koenig (2011) studies the time variation in the

correlations among power, fuels, and carbon in the U.K. market.

This paper presents a comprehensive study uncovering the inter-

dependencies in volatilities between power, fossil fuels, and carbon

in the German energy market. We focus on the German market for

two reasons. First, it represents the largest European power mar-

ket, and exhibits a growing degree of transparency and openness to-

wards surrounding markets. Second, and perhaps more important,

the German market is currently undergoing a structural transition

of its energy portfolio in order to reduce its dependence on fossil fu-

els, moving towards a larger proportion of renewable energy sources.

For this reason, Germany has attracted much attention within the

international energy arena. We analyse the correlations and volatil-

ity spillover e�ects between power, fuels, and carbon in light of the

on-going structural changes in this energy market. Since fossil-�red

power plants can be regarded as real options on the spreads between
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the power price and the production cost, we implicitly concentrate on

aspects related to the extrinsic value of power plants in this study,

which are of fundamental interest for energy companies and policy-

makers.

In order to perform a reliable and statistically robust analysis,

we employ a vector autoregressive (VAR) system coupled with time-

varying volatilities and correlations, as captured by a general Baba-

Engle-Kraft-Kroner (BEKK) speci�cation. The VAR part of the

model allows for commodity interrelations in expected returns, while

the BEKK part of the model allows for interrelations and spillover

e�ects in volatilities. We estimate the model with six di�erent co-

variance speci�cations, each under seven di�erent distributional as-

sumptions, by making use of the �exible skew-Student distribution

proposed in Bauwens and Laurent (2002, 2005). The �exible distribu-

tional assumption allows each return series to have individual statisti-

cal properties. Within this model framework, we perform an extensive

analysis of the model speci�cation, with particular focus on the con-

ditional second moments and distributional assumptions. According

to the likelihood tests, the preferred covariance matrix speci�cation

is the most general, allowing for asymmetric e�ects in volatility and

spillovers across a number of di�erent channels. The tests rejected

models that do not allow for spillover e�ects. The preferred distribu-

tional speci�cation, however, is not the most general. While excess

kurtosis is an important feature, we �nd that allowing for individual

tail properties does not provide a statistically signi�cant improvement

in the likelihood value.

We continue the paper with an economic analysis of the estima-

tion results from the best model based on our speci�cation tests. We

�nd statistically signi�cant spillover e�ects to the power market from

all other markets, with the spillover from coal standing out in mag-

nitude. Coal appears to be the driving commodity in our system, as
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we report plenty of spillover e�ects channelling from the coal market

and none channelling to it. These results are consistent with develop-

ments in the underlying markets. For example, we observe that gas

plays a less important role in the generation mix compared to coal,

and that spark spreads become negative toward the second half of

our sample period. In contrast, coal remains in-the-money, with dark

spreads staying positive throughout the sample period. Further, in-

specting the estimated conditional correlations reveals the weakening

link between power and fossil fuels. We argue that with the grow-

ing share of renewables in the German power generation mix, there is

less co-movement between the prices of power and thermal generation

sources.

The remainder of this chapter is organized in �ve further sections.

Our data are presented in Section 2. Sections 3 and 4 describe the

model framework and the estimation procedures, respectively. The

estimation results and analysis are discussed in Section 5, while Sec-

tion 6 contains a summary and concluding remarks.

2 The data

Our data set comprises the daily closing prices of the following futures

contracts:

1. Gas TTF1, traded on the APX-ENDEX exchange in EUR/MWh.

2. German base load power, traded on the EEX in EUR/MWh.

Base load pro�le refers to the delivery of power as a constant

�ow during the delivery period.

1The Title Transfer Facility (TTF) is a virtual market place for natural gas in the
Netherlands. It is commonly used as a price reference for gas contracts in both
the Netherlands and Germany.
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3. Coal API22, traded on the EEX in USD/t.

4. CO2 EU Allowances, traded on the EEX in EUR/t. One EUA

permits the emission of one ton of carbon dioxide. The futures

contract size is 1000 EUAs.

We perform the estimations on a sample that includes the front-

year contracts on gas, power, and coal, together with the futures

contract on carbon EUAs for delivery at the end of the current year.

The futures prices are sampled daily, and are organized as rolling

contracts. The front-year futures contracts are traded until the last

trading day of a year for the delivery of the underlying over the next

calendar year. The EUA futures contracts are settled in December of

the speci�ed year. Our sample starts on January 3, 2008, and ends

on January 15, 2014. The choice of the starting point is related to

the speci�cs of the carbon EUA market. The European Emissions

Trading Scheme (EU ETS) was introduced in 2005 and was planned

to be implemented in three phases, or three trading periods. The

�rst phase (2005 � 2007) was highly volatile and, during this period,

prices could triple or collapse by half over a one-week period. In

2007, carbon prices fell to almost zero, compared to a peak level of

around 30 EUR/t, when it became known that the aggregate emis-

sions were in fact lower than the number of allowances issued. The

carbon derivatives market was highly illiquid until the beginning of

the second phase in 2008. The daily futures settlement prices for the

�rst phase are available, but there were no actual trades on most of

these days. Therefore, we chose to start our sample in 2008. The

carbon market is still extremely volatile, and experienced a number

of sharp rises and falls, and not only in the early stages. For exam-
2API2 is a price index calculated as the average of the Argus cif (cost, insurance,
and freight), ARA (Amsterdam, Rotterdam, and Antwerpen) assessment, and
McCloskey's northwest European steam coal marker, and is the primary price
reference for coal contracts in North Western Europe.
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ple, on April 16, 2013, the price of a yearly carbon futures contract

dropped by 42%, from 4.97 EUR/t to 3.25 EUR/t. This happened

after the European Parliament rejected a proposal to delay the sales

of 900 million EUAs as a supply restriction measure intended to ar-

ti�cially raise the price during the period of economic slowdown and

the drop in power production. Extreme price movements and high

volatility were characteristic features of the carbon market, and will

likely remain so unless there are signi�cant regulatory changes, such

as, for example, price caps and �oors. Therefore, we keep the extreme

observations in our sample, and take their presence into account in

the estimations.

Table 2.1 presents the descriptive statistics for the daily log-returns

on our futures contracts. The returns resulting from rolling to a new

contract are deleted from the sample.

Table 2.1: Summary statistics for log-returns.

Gas Power Coal Carbon

Mean (%) −0.036 −0.048 −0.033 −0.099
Median (%) −0.047 −0.101 −0.017 0.000

Maximum (%) 9.223 6.508 8.622 22.369

Minimum (%) −7.406 −5.908 −9.820 −42.476
Std. Dev. (%) 1.378 1.087 1.462 3.357

Skewness 0.360 0.222 −0.334 −1.013
Kurtosis 7.212 7.509 8.943 23.108

Table 2.1 shows that all series are leptokurtic, with the carbon

returns being the most extreme case. It is worth noting that we have

both positively and negatively skewed series in our sample; the gas and

power returns are positively skewed, while coal and carbon returns

feature a negative skew. This motivates us to not only introduce

asymmetry and heavy tails when making distributional assumptions,

but also allow for di�erent properties in the individual series.
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Figure 2.1 indicates that all return series show time-varying volatil-

ity and volatility clustering. The energy markets were a�ected by the

�nancial crisis and, as can be seen in Figure 2.1, the gas, power,

and coal markets experienced a period of particularly high volatility

from the middle of 2008 to the middle of 2009. The carbon market

features several periods of pronounced volatility. Perhaps the most

striking price changes occurred during the �rst half of 2013, which

includes the turmoil caused by the European Parliament's decision

not to delay EUA sales.
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Figure 2.1: Time series of log-returns.

3 Model framework

This section describes the econometric speci�cation that we use to

analyse the volatility dynamics of the energy forward markets. It
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3.1 Conditional mean

consists of three building blocks: the conditional mean model, the

conditional covariance model, and the choice of the distribution of

innovations.

A general model within our multivariate framework can be formu-

lated as follows:

rt = µt + εt, (2.1)

where rt is a k × 1 vector of log-returns for k di�erent assets, µt is a

k × 1 vector, and εt is a k × 1 vector of zero-mean error terms with

conditional covariance matrix Ht. The process µt is the conditional

mean. Below, we discuss each component of the model in more detail.

3.1 Conditional mean

The conditional mean vector is modelled within the vector autore-

gression (VAR) framework. That is, each return series is assumed to

be a linear function of its own past lags and the past lags of the other

return series. An unrestricted VAR(p) model (lag order p) can be

written as follows:

µt = η + Φ1rt−1 + . . .+ Φprt−p, (2.2)

where Φj , for j = 1, . . . , p, are k × k matrices and η is a k × 1 vector

of constants.

3.2 Conditional covariance

We assume that the conditional covariance matrix Ht follows a mul-

tivariate Generalized Autoregressive Conditional Heteroskedasticity

(GARCH) process of the Baba-Engle-Kraft-Kroner (BEKK) type de-

veloped by Engle and Kroner (1995) and Kroner and Ng (1998):

Ht = C ′C +A′εt−1ε
′
t−1A+B′Ht−1B +D′ζt−1ζ

′
t−1D, (2.3)
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where A, B, C, and D are k × k matrices, εt−1 is the k × 1 vector of

error terms in Eq. (2.1), and ζt−1 is a k×1 vector of asymmetric error

terms. Each element in ζt−1 = (ζ1,t−1, . . . , ζk,t−1) is de�ned either as:

ζ+
i,t−1 ≡ max (εi,t−1, 0) or ζ−i,t−1 ≡ min (εi,t−1, 0) , (2.4)

depending on whether the conditional variance is higher following a

positive or a negative shock. We determine the speci�cation of ζ

by estimating univariate GARCH models with asymmetric residuals

on each individual time series. This approach enforces consistency

between the individual series in both the multivariate and univariate

models.

The speci�cation of the k × k lower triangular parameter matrix

C is such that C ′C is guaranteed to be positive semi-de�nite, while

A, B, and D are, apart from identi�ability conditions, unrestricted

k × k parameter matrices.3

We estimate six versions, M1�M6, of the BEKK model, which are

summarized in Table 2.2. The models di�er in terms of the speci�-

cation of the parameter matrices A, B, and D, and whether or not

the asymmetric term (D) is included. The least complex parameteri-

zation is M1, in which the parameter matrices A and B are diagonal

matrices, and the asymmetric term is not included. The most com-

plex speci�cation is M6, in which the parameter matrices A, B, and D

are non-diagonal and non-symmetric (i.e., with no restrictions on the

elements), and where we include the asymmetric term. By de�nition,

diagonal speci�cations allow for own-market in�uences on conditional

volatility only, while non-diagonal speci�cations also allow for cross-

market in�uences. If the parameter matrices are symmetric, spillovers

between two markets are automatically the same in both directions,

3A su�cient condition to eliminate observationally equivalent structures is to �x
the sign of one of the diagonal parameters in A, B, and D (see Engle and Kroner,
1995; Kroner and Ng, 1998).
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while non-symmetric parameter matrices remove this restriction.

Table 2.2: Covariance speci�cations.

Model Parameter matrices A,B, and D Asymmetric BEKK term

M1 diagonal no

M2 diagonal yes

M3 non-diagonal symmetric no

M4 non-diagonal symmetric yes

M5 non-diagonal non-symmetric no

M6 non-diagonal non-symmetric yes

An important feature of the BEKK parameterization is that it

models the full covariance matrix directly. Within the most general

model, a typical diagonal element hii,t, representing the variance of

commodity i at time t, can be explicitly written as a function of the

past variances, covariances, and shocks, as follows:

hii,t =
k∑
j=i

c2
ji +

k∑
j=1

ajiεj,t−1

k∑
j=1

ajiεj,t−1

+ (2.5)

+

k∑
j=1

(
bji

k∑
l=1

blihlj,t−1

)
+

k∑
j=1

djiζj,t−1

k∑
j=1

djiζj,t−1

 .

Consequently, o�-diagonal elements in the parameter matrices A,

B, and D have immediate interpretations in terms of cross-market

volatility spillover e�ects. In particular, the parameters aji, bji, and

dji, for j 6= i, control volatility spillovers from commodity j to com-

modity i. The signs of the o�-diagonal parameters do not have a

straightforward interpretation because these parameters appear in

several non-linear terms determining each element of the H-matrix

at each point in time. Thus, the total e�ect of a shock in one mar-

ket on the volatility in another market is a non-linear function of the
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shocks to all variables in the system. However, if, for example, pa-

rameter aji is nonsigni�cant, then there is automatically no e�ect of

εj,t−1 on hii,t. This holds regardless of whether the other o�-diagonal

elements are signi�cant. In contrast, the presence of a signi�cant o�-

diagonal parameter in any of the A-, B-, or D-matrices allows us to

conclude that spillovers exist, and also to determine their direction.

In addition, we can compare the size of the spillover e�ects based

on the magnitude of these parameters. This motivates our choice of

framework. An alternative model framework might have been the dy-

namic conditional correlation (DCC) models proposed in Engle (2000)

and Engle and Sheppard (2001), which specify the evolution of the

conditional correlation matrix instead. However, as discussed above,

we prefer to work with BEKK-type models because these models di-

rectly specify the evolution of the full covariance matrix, in which we

can interpret the relevant parameters straightforwardly in terms of

second-moment spillovers.4

3.3 Distributional assumptions

We complete the model framework with a speci�cation of the joint

distribution for the vector of innovations ε in Eq. (2.1). A common

approach in the literature assumes the multivariate normal distribu-

tion and argues that, even if the true conditional distribution of the

innovations is not normal, the Quasi-Maximum Likelihood (QML) es-

timator is consistent and asymptotically normal, provided that the

conditional mean and conditional variance equations are correctly

speci�ed (see Bollerslev and Wooldridge, 1992). However, Engle and

Gonzales-Rivera (1991) show that the QML estimator is ine�cient

and, furthermore, that its ine�ciency increases with the degree of de-

parture from normality. This point is particularly important for �nan-

4See Caporin and McAleer (2012) for an interesting discussion of the similarities
and di�erences between the BEKK and DCC models.
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cial assets, for which the returns are generally skewed and leptokurtic.

Furthermore, in many practical applications that involve estimating

tail quantiles, distributions that incorporate non-zero skewness and

excess kurtosis are highly relevant; for example, in parametric value-

at-risk estimations (see Giot and Laurent, 2003; Hung, Lee, and Liu,

2008; and Cheng and Hung, 2011). Therefore, while the normal dis-

tribution may serve as a benchmark case, we believe that more �exible

distributions are an important building block when modelling energy-

related asset returns. In this study, we choose to deviate from the

normality assumption. In particular, we implement the VAR-BEKK

process in conjunction with the multivariate skew-Student density of

Bauwens and Laurent (2002, 2005).

The most general version of their multivariate skew-Student distri-

bution is constructed such that the univariate marginal distributions

can have individual skewness coe�cients and tail properties. Given

the nature of our data, which we summarize in Table 2.1, with the car-

bon return series being considerably more leptokurtic, we want to re-

lax the restriction of equal degrees of freedom implied by the standard

multivariate Student distribution. We also want to allow for di�er-

ent skewness coe�cients for the individual series, especially since we

have both positively and negatively skewed variables in our sample.

The multivariate skew-Student density with the independent compo-

nents of Bauwens and Laurent (2002, 2005) introduces such �exibility

at a reasonable computational cost. In addition, this skew-Student

distribution is relatively straightforward to augment with GARCH-

type second-moment dynamics. Naturally, the skewness coe�cients,

as well as the degrees of freedom, can be restricted to a single value,

creating di�erent types of nested distributions, the relevance of which

can be statistically contrasted using standard likelihood ratio tests.

Following Bauwens and Laurent (2002), a k× 1 random vector zt
is standard multivariate skew-Student distributed with independent
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components if its probability density function is given by:

f(zt) =

(
2√
π

)k  k∏
i=1

ξisi
1 + ξ2

i

Γ
(
υi+1

2

)
Γ
(
υi
2

)√
υi − 2

(
1 +

κ2
i,t

υi − 2

)− 1+υi
2

 ,
(2.6)

where

κi,t = (sizi,t +mi) ξ
−Ii,t
i , (2.7)

and

Ii,t =

 1 if zi,t ≥ −mi
si

−1 if zi,t < −mi
si

, (2.8)

with skewness parameters ξ = (ξ1, ..., ξk) and degrees of freedom pa-

rameters υ = (υ1, ..., υk) for υi > 2. We let Γ(x) denote the Gamma

function evaluated at x > 0. We obtain the density function f(zt)

by taking the product of k independent skew-Student components,

thereby allowing each marginal distribution to have a di�erent tail

behaviour. In the present setting, we de�ne the multivariate skew-

Student distribution for the vector of standardized residuals zt as

follows:

zt = H
−1/2
t εt, (2.9)

where εt is the vector of actual residuals from the model in Eq. (2.1)

and Ht is the BEKK covariance matrix in Eq. (2.3). The constants

mi = mi (ξi, υi) and si = si (ξi, υi) are the means and standard devi-

ations of the non-standardized univariate skew-Student density as in

Fernandez and Steel (1998), respectively, de�ned by:

mi (ξi, υi) =
Γ
(
υi−1

2

)√
υi − 2

√
πΓ
(
υi
2

) (
ξi −

1

ξi

)
, (2.10)

s2
i (ξi, υi) =

(
ξ2
i +

1

ξ2
i

− 1

)
−m2

i . (2.11)
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The parameter ξ2
i is the ratio of probability masses above and below

the mode, and can be interpreted directly as a measure of skewness.

In the case where ξi < 1, the data are negatively skewed, and ξi

> 1 indicates positive skewness. The symmetric case corresponds to

ξi = 1, which implies that mi = 0 and si = 1. If we restrict all ξi
to be equal to 1, and all υi to be the same, Eq. (2.6) reduces to a

distribution similar to the textbook multivariate Student density.

4 Estimation

In our �nal four-asset model framework, we organize the vector of

futures log-returns as rt = (r1,t, r2,t, r3,t, r4,t)
′, where r1,t denotes the

return on natural gas, r2,t denotes the return on power, r3,t denotes

the return on coal, and r4,t denotes the return on carbon.

We start by determining the appropriate lag order p for the VAR

part governing the mean equation. To do so, we employ a number of

criteria. Individual correlograms of return series indicate that auto-

correlation is present at the �rst lag, and in some cases, at the second

lag as well. Next, we compare the VAR models of up to the �fth order

based on the information criteria (AIC, SIC, and HQ), the sequential

likelihood ratio (LR) test statistics, and the �nal prediction error.5

We select two lags by three out of these �ve criteria, and none favour

more than two lags. The �nal check is a test for any remaining serial

correlation in the residuals. According to the multivariate LM test, we

can reject the null hypothesis of no autocorrelation up to the second

order in residuals of VAR(1) at any conventional signi�cance level. In

contrast, for the VAR(2) model, we cannot reject the hypothesis of

no autocorrelation up to the second order at the 5% signi�cance level.

Therefore, we choose a VAR(2) speci�cation for the conditional mean

process.

5We estimate these VAR models assuming normally distributed innovations.
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To determine an appropriate de�nition for the asymmetric error

term of each asset, ζi, we estimate univariate GARCH models of the

type proposed in Glosten, Jagganathan, and Runkle (1993) for each

series. Then, we pick the best speci�cation based on the likelihood

value. This analysis leads us to specify the vector ζ as:

ζt =
(
ζ+

1,t, ζ
−
2,t, ζ

+
3,t, ζ

−
4,t

)′
,

where ζ+
i,t and ζ

−
i,t are de�ned in Eq. (2.4). This speci�cation is con-

sistent with conditional variance being higher after a negative shock

for power and carbon (the leverage e�ect), but higher after a positive

shock for gas and coal (the inverse leverage e�ect).

4.1 Methodology

We estimate all parameters in our models simultaneously using full

information maximum likelihood (ML). Our estimation methodology

proceeds in three steps. First, we use the OLS method to estimate the

parameters in the mean equations, ignoring the GARCH error struc-

ture. Then, we estimate the GARCH parameters by QML, assuming

normality and conditional on the given VAR parameters. These two

steps yield consistent estimates of all mean and covariance parameters

(Bollerslev and Wooldridge, 1992). However, to obtain e�cient esti-

mates, we require a joint estimation of all parameters. This motivates

our �nal step, in which we re-estimate all parameters using the pa-

rameter estimates from the two initial steps as starting values only.6

We implement this procedure for all six covariance speci�cations in

Table 2.2.

6As starting values for the distributional parameters in the skew-Student distri-
butions, we use ξi = 1 for all skewness parameters. For the degrees of freedom
υi, we use either the value corresponding to the average kurtosis of the data
series, or the values corresponding to the individual kurtosis of the data series,
depending on the speci�cation (see Table 2.3).
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4.1 Methodology

Let θ denote the parameter vector for the full model. Then, the

log-likelihood function is given by:

lnL (θ) =

T∑
t=3

{
ln f (zt)−

1

2
ln |Ht|

}
, (2.12)

where f (zt) is the probability density function in Eq. (2.6), T is the

number of time series observations, and |Ht| denotes the determinant

of Ht. Note that the summation starts from t = 3 because the esti-

mation is conditional on the �rst two time series observations owing

to the VAR(2) speci�cation of the mean equation. The second term

in the sum in Eq. (2.12) is the Jacobian correction term arising in

the transformation from z to ε. To evaluate the likelihood function,

we calculate the inverse of the square root matrix H−1/2
t in Eq. (2.9)

at each time point using a standard spectral decomposition. We set

the initial Ht equal to the sample covariance matrix and the initial

values of the residuals are set equal to zero.

We estimate the six BEKK speci�cations described in Table 2.2

by maximizing the log-likelihood function in Eq. (2.12). In addition,

we estimate each model under the assumption of the six types of

multivariate Student distributions summarized in Table 2.3.

We also estimate all BEKK speci�cations for the benchmark case

of the normal distribution. In the case of normally distributed residu-

als, we replace the density function in Eq. (2.12) by the standardized

normal density obtained as the limiting distribution of f (zt) when

ξi = 1, as υi →∞.
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Table 2.3: Types of Student distributions.

Parameter Type 1 Type 2 Type 3 Type 4 Type 5 Type 6

υ1 υ υ1 υ υ1 υ υ1

υ2 υ υ2 υ υ2 υ υ2

υ3 υ υ3 υ υ3 υ υ3

υ4 υ υ4 υ υ4 υ υ4

ξ1 1 1 ξ ξ ξ1 ξ1

ξ2 1 1 ξ ξ ξ2 ξ2

ξ3 1 1 ξ ξ ξ3 ξ3

ξ4 1 1 ξ ξ ξ4 ξ4

Note: Types 1 and 2 correspond to symmetric distributions. Types 3 and 4 are asym-
metric with a common value of the skewness parameter, while Types 5 and 6 allow the
variables to have di�erent skewness properties. With respect to kurtosis, Types 1, 3, and
5 restrict degrees of freedom parameters to a common value, while Types 2, 4, and 6
allow them to vary.

In total, we estimate 42 di�erent model speci�cations. The num-

ber of conditional mean parameters is always 36. The total num-

ber of conditional covariance parameters together with the skewness

and degrees of freedom parameters ranges from 18 in the simplest

speci�cation (M1/Normal) to 66 in the most complex speci�cation

(M6/Type6). The log-likelihood function is maximized by simulated

annealing, which is a derivative-free stochastic search algorithm. The

fundamental property of simulated annealing is that it is allowed to

accept worse intermediate solutions (downhill moves) while searching

for the optimum, which leads to a more extensive exploration of the

parameter space and prevents the algorithm from becoming stuck in

local optima. In theory, this property also makes the algorithm in-

sensitive to starting values. However, to further increase the chance

of identifying the global optimum, we implement the sequential strat-

egy described above, which involves using consistent QML estimates

as starting values. Our particular implementation of the algorithm

follows the approach in Go�e, Ferrier, and Rogers (1994) closely. The
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5 Results

advantages of simulated annealing come at the cost of a higher execu-

tion time compared to conventional algorithms. Thus, we execute all

optimizations on a high-performance computer cluster.7 We calculate

the standard errors for individual parameters by estimating the outer

product of the gradients matrix using numerical �rst derivatives.8

5 Results

This section presents the estimation results. We �rst describe the

likelihood ratio tests for the preferred model speci�cation. Next, we

discuss the estimated parameters from the best model, with a partic-

ular focus on volatility spillovers. Finally, we examine the estimated

conditional correlations and volatilities.

5.1 Model speci�cation

The mean equation in our model is a preselected VAR(2) speci�cation.

Therefore, the choice of the preferred model involves two parts: the

covariance speci�cation and the distributional assumption.

Table 2.4 reports the results of the LR tests of the six BEKK

speci�cations. We �nd that, regardless of the additional assump-

tions, the models with an asymmetric term and with non-diagonal,

non-symmetric parameter matrices are superior. Because speci�ca-

tions with diagonal parameter matrices are rejected against their

non-diagonal counterparts, we conclude that volatility spillovers in

the energy forward markets exist. We also infer that these spillovers

are not the same in both directions because we reject the models with

7The computations were performed on resources provided by the Swedish National
Infrastructure for Computing (SNIC) at LUNARC, Lund University.

8An alternative is to calculate the standard errors based on the inverse of the
Hessian. However, implementing stable and reliable numerical second derivatives
is a challenge, even in less complex settings than ours. Thus, we leave this topic
for future research.
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non-diagonal, symmetric parameter matrices against the models with

non-diagonal and non-symmetric parameter matrices.

Table 2.4: Likelihood ratio tests of covariance speci�cations.

Test 5% cr.v. 1% cr.v. Type 1 Type 2 Type 3 Type 4 Type 5 Type 6

1
M1 vs. M2

LR (4)
9.49 13.28 50.39 48.35 49.89 47.66 50.86 49.29

2
M3 vs. M4

LR (10)
18.31 23.21 71.14 70.63 70.94 70.02 70.75 70.46

3
M5 vs. M6

LR (16)
26.30 32.00 74.30 75.27 76.13 77.18 76.57 76.93

4
M1 vs. M3

LR (12)
21.03 26.22 36.20 36.25 35.02 35.24 32.00 32.36

5
M2 vs. M4

LR (18)
28.87 34.81 56.95 58.53 56.06 57.60 51.89 53.53

6
M1 vs. M5

LR (24)
36.42 42.98 65.27 64.07 62.48 60.96 57.28 57.15

7
M2 vs. M6

LR (36)
51.00 58.62 89.18 90.99 88.72 90.47 82.99 84.80

8
M3 vs. M5

LR (12)
21.03 26.22 29.07 27.82 27.46 25.72 25.28 24.80

9
M4 vs. M6

LR (18)
28.87 34.81 32.23 32.46 32.66 32.87 31.10 31.27

Note: Tests 1�3 are for the asymmetric BEKK term (H0: D = 0 versus H1: D 6= 0).
Tests 4�5 are for H0: diagonal matrices versus H1: non-diagonal, symmetric matrices.
Tests 6�7 are for H0: diagonal matrices versus H1: non-diagonal, non-symmetric matrices.
Tests 8�9 are for H0: non-diagonal symmetric matrices versus H1: non-diagonal, non-
symmetric matrices.
The remaining combinations of models are not nested. The degrees of freedom are re-
ported in parentheses. Columns 3 and 4 report the upper-tail critical values of χ2-
distribution with the corresponding degrees of freedom.

In summary, based on the LR tests, we prefer the most general

covariance model (M6), with non-diagonal, non-symmetric parameter

matrices and an asymmetric term.

Irrespective of the covariance model, the log-likelihood value in-

creases signi�cantly when switching from the normal distribution to
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5.1 Model speci�cation

the simplest Student distribution (Type 1). This suggests that allow-

ing for excess kurtosis is also highly important in a conditional setting,

although we cannot do an LR test for non-nested distributional spec-

i�cations. The test results for the nested Student speci�cations are

summarized in Table 2.5. These results hold regardless of the covari-

ance model speci�cation, and we report the test statistics and the

p-values for the M6 covariance model only.

Table 2.5: Likelihood ratio tests of distributional speci�cations for
the M6 model.

LR Type 1 Type 2 Type 3 Type 4 Type 5 Type 6

Type 1 5.81 7.25 13.44 25.20 31.27

(0.1212) (0.0071) (0.0093) (0.0000) (0.0001)

Type 2 − 7.63 − 25.46

(0.0057) (0.0000)

Type 3 6.19 17.95 24.02

(0.1027) (0.0005) (0.0005)

Type 4 − 17.83

(0.0005)

Type 5 6.07

(0.1083)

Type 6

Note: `�' indicates that the distributional types are not nested. The χ2 p-values for
upper-tail one-sided tests with the corresponding degrees of freedom are reported in
parentheses.

First, we can reject Type 1 against Type 3, and Type 2 against

Type 4, which means that introducing non-zero skewness leads to a

statistically signi�cant increase in the log-likelihood value. Moreover,

allowing for individual skewness coe�cients is also statistically impor-

tant because we can strongly reject Type 3 against Type 5, and Type

4 against Type 6. However, as indicated by the p-values exceeding

0.10, we cannot strongly reject Type 1 against Type 2, Type 3 against

Type 4, and Type 5 against Type 6. This indicates that allowing for
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individual excess kurtosis is not as important as allowing for indi-

vidual skewness. Based on these tests, our preferred distribution is

Type 5, which is the multivariate skew-Student distribution with a

common degrees of freedom parameter and with individual skewness

parameters.

We base the further analysis in this section on the results obtained

from the preferred model: M6/Type5.

5.2 Parameter estimates and volatility spillovers

Tables 2.6 and 2.7 present the estimation results for the M6/Type5

model. We are particularly interested in the o�-diagonal elements of

the A, B, and D parameter matrices because they control the cross-

market e�ects in the second-moment dynamics. However, we start

with a general overview of the estimation results.

The diagonal elements of the B-matrix indicate a high level of

persistence in the volatility of energy log-returns. Among the diagonal

elements of the D-matrix, we �nd a signi�cant d33 for coal and d44

for carbon. This con�rms the presence of asymmetric e�ects in the

conditional volatility of these assets. The inverse leverage e�ect that

we �nd in the coal series is consistent with the theory of storage in

commodity markets, arguing that high prices occur at periods of low

inventory levels and are associated with high volatility (see Deaton

and Laroque, 1992).

Based on the 95% con�dence intervals, the skewness parameters

ξ1 of gas and ξ2 of power are statistically signi�cantly larger than

1, which is consistent with the positive sign on the unconditional

skewness in the data. The skewness parameter estimates of coal and

carbon are in the negative region, slightly below 1. However, since the

upper bound of the con�dence intervals is above 1 for these parame-

ters, we can draw no conclusions. Further, we estimate the common
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5.2 Parameter estimates and volatility spillovers

degrees of freedom parameter υ of 7.6792.9

Table 2.6: Conditional mean parameter estimates for the M6/Type5
model.

η1 0.0080 η2 −0.0425∗∗ η3 -0.0277 η4 -0.0674

(0.0207) (0.0186) (0.0250) (0.0603)

φ
(1)
11 0.0433 φ

(1)
12 0.0150 φ

(1)
13 0.0064 φ

(1)
14 0.0007

(0.0300) (0.0410) (0.0250) (0.0063)

φ
(1)
21 0.0214 φ

(1)
22 -0.0467 φ

(1)
23 0.0213 φ

(1)
24 0.0283∗∗∗

(0.0222) (0.0349) (0.0206) (0.0059)

φ
(1)
31 0.0673∗∗ φ

(1)
32 0.1099∗∗ φ

(1)
33 -0.0191 φ

(1)
34 -0.0006

(0.0297) (0.0448) (0.0291) (0.0078)

φ
(1)
41 -0.0779 φ

(1)
42 0.0047 φ

(1)
43 −0.1056∗∗ φ

(1)
44 0.0346

(0.0499) (0.0849) (0.0503) (0.0294)

φ
(2)
11 0.0407 φ

(2)
12 -0.0163 φ

(2)
13 0.0017 φ

(2)
14 -0.0022

(0.0294) (0.0394) (0.0250) (0.0066)

φ
(2)
21 0.0140 φ

(2)
22 -0.0356 φ

(2)
23 0.0160 φ

(2)
24 -0.0076

(0.0220) (0.0343) (0.0212) (0.0065)

φ
(2)
31 -0.0179 φ

(2)
32 0.0166 φ

(2)
33 -0.0153 φ

(2)
34 -0.0026

(0.0290) (0.0436) (0.0287) (0.0075)

φ
(2)
41 0.0446 φ

(2)
42 0.0005 φ

(2)
43 -0.0406 φ

(2)
44 −0.0602∗∗

(0.0532) (0.0851) (0.0539) (0.0295)

Note: The conditional mean is given by Eq. (2.2), where η is a 4× 1 vector of constants,

and Φ1 and Φ2 are 4×4 VAR parameter matrices with elements denoted by φ
(1)
ij and φ

(2)
ij ,

for i, j = 1 (gas), 2 (power), 3 (coal), 4 (carbon), respectively. φ
(p)
ij represents the e�ect

of commodity j on commodity i in lag p. Standard errors are reported in parentheses.

Superscripts *, **, and *** denote statistical signi�cance at the 10%, 5%, and 1% levels,

respectively.

9We estimate υ−1 instead of υ for numerical reasons.
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Table 2.7: Conditional covariance and distributional parameter es-
timates for the M6/Type5 model.

a11 0.1881∗∗∗ a12 0.0322∗ a13 0.0275 a14 -0.0182

(0.0216) (0.0175) (0.0184) (0.0456)

a21 0.0279 a22 0.1695∗∗ a23 0.0481 a24 -0.0572

(0.0358) (0.0316) (0.0338) (0.0907)

a31 -0.0061 a32 0.0281 a33 0.1413∗∗∗ a34 0.0185

(0.0201) (0.0189) (0.0217) (0.0554)

a41 -0.0021 a42 0.0106∗ a43 -0.0003 a44 0.2727∗∗∗

(0.0051) (0.0054) (0.0054) (0.0329)

b11 0.9806∗∗∗ b12 0.0053 b13 -0.0076 b14 0.0090

(0.0054) (0.0050) (0.0048) (0.0133)

b21 −0.0212∗∗ b22 0.9606∗∗∗ b23 -0.0145 b24 0.0572∗

(0.0107) (0.0096) (0.0097) (0.0295)

b31 0.0073∗ b32 -0.0033 b33 0.9895∗∗∗ b34 −0.0206∗

(0.0038) (0.0042) (0.0035) (0.0120)

b41 0.0022 b42 -0.0024 b43 -0.0003 b44 0.9211∗∗∗

(0.0016) (0.0019) (0.0018) (0.0093)

c11 0.0017

(0.0533)

c21 -0.0302 c22 -0.0434

(0.0286) (0.0330)

c31 0.0035 c32 0.0715∗ c33 0.0556∗∗

(0.0244) (0.0272) (0.0243)

c41 -0.0124 c42 0.0250 c43 0.0137 c44 0.3263∗∗∗

(0.0275) (0.0268) (0.0326) (0.0637)

d11 0.0602 d12 −0.0869∗∗∗ d13 -0.0128 d14 -0.0845

(0.0391) (0.0273) (0.0261) (0.0593)

d21 -0.0055 d22 0.0523 d23 -0.0360 d24 0.1047

(0.0456) (0.0467) (0.0479) (0.0976)

d31 0.0808∗∗∗ d32 0.1378∗∗∗ d33 0.0987∗∗∗ d34 0.1525∗∗

(0.0306) (0.0280) (0.0367) (0.0772)

d41 0.0037 d42 −0.0169∗∗ d43 0.0028 d44 −0.3608∗∗∗

(0.0069) (0.0083) (0.0083) (0.0448)

ξ1 1.1454∗∗∗ ξ2 1.1187∗∗∗ ξ3 0.9893∗∗∗ ξ4 0.9641∗∗∗

(0.0455) (0.0455) (0.0405) (0.0388)

ν−1 0.1302∗∗∗

(0.0131)

Note: The conditional covariance matrix is given in Eq. (2.3) and speci�ed by the 4× 4
matrices A, B, C, and D, the elements of which are denoted by aij , bij , cij , and dij , for
i, j = 1 (gas), 2 (power), 3 (coal), and 4 (carbon), respectively. The C-matrix is lower
triangular and, therefore, there are no estimates for the entries above the diagonal. The
distributional parameters are ν−1, ξ1, ξ2, ξ3, and ξ4. Standard errors are reported in
parentheses. Superscripts *, **, and *** denote statistical signi�cance at the 10%, 5%,
and 1% levels, respectively.
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Of the nine parameters that control volatility spillovers to the

power market (a12, a32, a42, b12, b32, b42, d12, d32, d42), we �nd that

a12, a42, d12, d32, and d42 are statistically signi�cant. These spillovers

originate from all other markets, and are channelled mostly through

the asymmetric BEKK term, with all three of the d-parameters in

question being signi�cant.

The results presented in Table 2.7 indicate that the most size-

able and statistically signi�cant volatility spillover e�ect to the power

market comes from the coal market (as captured by d32). We also

�nd statistically signi�cant spillover e�ects to the power market from

the gas and carbon markets, but these e�ects are of lower magnitude.

This result is consistent with the stronger interrelations in volatility

between electrical power and the fuel type that is currently in-the-

money. Figure 2.2 plots the yearly clean spark and dark spreads

during our sample period, which indicate the pro�t margins of gas-

and coal-�red power plants, respectively.10

Figure 2.2 shows that the dark spread is mostly higher than the

spark spread, which means that power generation from coal was more

pro�table than that from gas during almost the entire sample period.

Moreover, coal never falls out-of-the-money, unlike gas, for which the

spark spread becomes negative from the beginning of 2013 onwards.

10We use the following typical de�nitions of the clean spark spread (CSS) and
clean dark spread (CDS):

CSS = Power− 2×Gas− 0.4× Carbon,

and
CDS = Power− 0.4× Coal− 0.9× Carbon.

We use the peak load power price in all calculations.
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Figure 2.2: Time series of clean spark and clean dark spreads.

To gain additional insights, we examine the data on actual elec-

tricity production in Germany from di�erent technologies.11 Figure

2.3 plots the weekly volumes of electricity (in TW) generated in Ger-

many using coal and gas by a number of electricity producers.

Much more electricity is generated from coal almost every week

during our sample period. Apart from winter�summer seasonality, we

can clearly observe that generation from gas is steadily falling, owing

to decreasing spark spreads. Additionally, the di�erence between the

electricity volumes produced from the two fuels grows steadily as the

dark spreads wander further up from the spark spreads. This trend

is further supported by the recent low carbon price environment. We

believe that these fundamental relationships in the supply stack are

11Source: http://www.transparency.eex.com. This information is reported under
voluntary commitments by around 40% of market participants registered on the
EEX transparency platform.
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5.2 Parameter estimates and volatility spillovers

the reason why the spillovers from gas to power are smaller than from

coal to power.
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Figure 2.3: Time series of weekly electricity generation from coal and gas
in Germany.

In addition to the reported volatility spillovers from the fuel com-

ponents to the power price, we �nd statistically signi�cant results in

the opposite direction, namely from power to gas and carbon (the

signi�cant parameters are b21 and b24). There is no clear fundamen-

tal reason why volatility spillovers would occur in this direction. Our

interpretation is that a given increase in the forward power volatil-

ity creates uncertainty about the future power price level, which, in

turn, leads to additional uncertainty about the future gas and carbon

volumes planned for power production. Finally, this uncertainty is

transmitted to the gas and carbon prices. We see similar results for

the coal and gas volatilities, where we report a statistically signi�cant
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spillover e�ect from the coal market to the gas market (parameters

b31 and d31). In general, coal appears to be the driving commodity

in terms of volatility in our system since we �nd many signi�cant

spillovers channelled from the coal market, and none channelled to it.

We believe that an increase in coal volatility impacts the uncertainty

of the future production mix (coal/gas) for power production, which

manifests as gas volatility. Moreover, we report a fairly sizeable and

statistically signi�cant volatility spillover e�ect from the coal market

to the carbon market (parameters b34 and d34). We note that the

coal and carbon markets are clearly linked via the power market be-

cause coal power plants are major CO2 emitters. In terms of electrical

energy, coal emits more than twice the CO2 of gas. This is veri�ed

by the carbon coe�cients in the clean spark and dark spread de�ni-

tions (see footnote 10), which represent the number of carbon credits

necessary to cover the respective power production. We believe that

the connection between the coal and carbon markets, along with coal

having been a pro�table technology (in-the-money) for power pro-

duction during the full sample period explain the signi�cant volatility

spillover e�ects from coal to power. An increase in coal volatility likely

creates uncertainty about the future production mix (coal/gas), and

hence uncertainty about future emitted CO2 volumes, which �nally

transmits to the carbon prices.

5.3 Conditional correlations and volatilities

Next, we use the estimated parameters to calculate the conditional

second moments. Figure 2.4 displays the conditional volatilities of

the log-returns on our four commodities as implied by the preferred

model.

We can see that the estimated processes are in line with the time
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5.3 Conditional correlations and volatilities

series of log-returns in Figure 2.1.12 Carbon has the highest volatility

on average, characterized by a dramatic increase towards the end

of the sample period. This period of elevated volatility was mostly

related to the uncertainty about the EUA supply in the beginning

of 2013, and the subsequent policy decisions mentioned in Section

2. Note also the contemporaneous spike in power volatility, while gas

and coal markets retained tranquillity. This might be an example of a

volatility spillover e�ect, since to our knowledge, nothing idiosyncratic

happened at the same time in the German power market.
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Figure 2.4: Conditional volatilities of commodity log-returns implied by
the M6/Type5 model.

We proceed our analysis by investigating conditional correlations.

Correlations measure the degree of co-movement between energy com-
12In addition, we �nd our GARCH sample averages of volatilities to be 1.373
(gas), 1.061 (power), 1.408 (coal), and 3.569 (carbon), which is in line with the
sample standard deviations of log-returns in Table 2.1.
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modities, which is an essential determinant of power producers' hedg-

ing strategies. Figure 2.5 presents the power/gas and power/coal

correlations, as implied by the preferred model.

We �nd a clear decreasing trend in both series during the sample

period. The average power/gas correlation coe�cient falls by half,

from 0.72 in 2008 to 0.36 in 2013, while the average power/coal cor-

relation coe�cient decreases from 0.67 to 0.46.
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Figure 2.5: Conditional correlations between power and fuels implied by
the M6/Type5 model.

The correlations between power and gas exhibit a particularly

sharp decline from the beginning of 2013, which coincides with the

spark spreads turning negative. Less co-movement between power

and fossil fuels can be attributed to the rise in renewables, which

o�er power generation at the lowest marginal cost, decreasing the

long-run mean power price level. In Germany, the share of renewables
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in the power generation mix grew from 16% in 2008 to 25% in 2013.

Furthermore, the German government aims to raise it to 35% by 2020,

and to 50% by 2030.13 The build-up of renewable generation capacity

also leads to lower loads on thermal power plants. These structural

changes in the supply stack tend to loosen the relationship between

power and fossil fuels, which is re�ected in the decreasing correlations.

6 Summary and conclusions

In this study, we investigate modelling of electrical power, gas, coal,

and carbon in the multivariate setting. These commodities are funda-

mentally linked through the electricity generation process, which gives

rise to a number of interdependencies. The literature traditionally fo-

cused on the interdependencies between the prices or returns, i.e., in

the �rst moments. This study �nds that non-trivial cross-market ef-

fects also exist in the second moments, and, in explaining the changes

in volatility in the power market, for instance, one should take into

account volatility in the related markets. We estimate a large number

of model speci�cations within the VAR-BEKK framework. The model

selection results indicate that accounting for cross-market e�ects and

asymmetric e�ects in volatility leads to a statistically signi�cant im-

provement in the likelihood value. Our preferred skew-Student dis-

tributional speci�cation features individual skewness parameters for

the four commodities, and a common degrees of freedom parameter

to determine the tail properties. An analysis of the estimated condi-

tional correlations reveals a decrease in co-movement between power

and fossil fuels during 2008 � 2013, which can be related to the grow-

ing share of renewable generation sources in Germany. We �nd that

the highest magnitude volatility spillover e�ect to the power market

comes from the coal market. This result is consistent with coal's
13Source: BDEW German Association of Energy and Water Industries (2014).
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higher pro�tability and larger share in the generation mix compared

to gas. While the estimated in this study coe�cients provide an idea

of the average spillover e�ects during the sample period, a natural

extension is to adopt a dynamic perspective, revealing how volatility

transmission has evolved over time.
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This study investigates the transmission of volatility between elec-
trical power, natural gas, coal, and carbon emission allowances in the
German energy market during 2008 � 2013. We focus on the impact
of large exogenous shocks in gas, coal, and carbon on the expected
variance of power. We base our methodology on the concept of the
Volatility Impulse Response Function (VIRF) introduced in Hafner
and Herwartz (2006). We suggest a method to normalize the VIRF
such that the results are straightforward to interpret and comparable
over time and across di�erent markets. The results indicate that posi-
tive news (i.e., price increases) in both gas and coal markets leads to a
much larger variance response in the power market than negative news
(i.e., price decreases). The impact of the gas market news is weaker
on average compared to the coal market news, however it takes longer
to die out. Spillovers from the carbon market show the fastest decay
and are nonsigni�cant until 2011. Benchmarking the magnitude of
the responses in the variance of power against the own-market vari-
ance responses reveals a non-trivial size of the cross-market e�ects,
and suggests the relevance of taking them into account in practical
applications.
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Chapter 3

1 Introduction

In Chapter 2, we uncovered interdependencies in volatility between

electrical power, natural gas, coal, and carbon emission allowances in

the German energy forward markets. Although we estimated a model

with time-varying conditional second moments, our interpretation of

the volatility spillover e�ects is rather static and limited to constant

spillover coe�cients. The aim of this study is to provide a rich dy-

namic perspective on the volatility transmission, and to quantify the

impact of the shocks in a way that is straightforward to interpret and

ensures comparability both over time and across di�erent markets.

To achieve this goal, we apply the volatility impulse response anal-

ysis, which is a powerful tool for understanding the mechanics of shock

transmission. Our implementation is based largely on the methodolo-

gies in Koop et al. (1996) and Hafner and Herwartz (2006). Koop

et al. (1996) develop the Generalized Impulse Response Function

(GI), which deals with the problems of history, shock, and composi-

tional dependence of traditional impulse response functions when ap-

plied to multivariate non-linear systems. This methodology was tra-

ditionally applied to conditional mean systems. Hafner and Herwartz

(2006) extend it to multivariate Generalized Autoregressive Condi-

tional Heteroskedasticity (GARCH) models and introduce the con-

cept of the Volatility Impulse Response Function (VIRF). The VIRF

measures the di�erence in expected (co)variance following an inde-

pendent shock, and the expected `baseline' (co)variance without the

information about this shock. They derive analytical expressions for

the VIRF in a general symmetric multivariate GARCH setting. In

this study, however, we work with an asymmetric BEKK model se-

lected based on the analysis in Chapter 2, and therefore, we do not

use the VIRF as de�ned in Hafner and Herwartz (2006). Instead,

we compute the VIRF numerically via Monte Carlo integration tech-
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niques outlined for the GI in the earlier work of Koop et al. (1996).

Further, we suggest an e�ective way of normalizing the responses that

facilitates the interpretation of the results.

Volatility impulse response analysis is a relatively recent develop-

ment. The VIRF methodology of Hafner and Herwartz (2006) was

applied to equity and commodity markets in a number of very recent

studies (see Olson et al., 2014; Hasanov et al., 2016; Jin and An,

2016). Le Pen and Sevi (2010) investigate volatility transmission be-

tween a number of European electricity markets, also with the help

of the analytical VIRF expressions in the symmetric BEKK setting.

To our knowledge, this is the �rst comprehensive study of volatility

transmission between the di�erent energy markets.

We investigate how the exogenous shocks in the gas, coal, and

carbon markets a�ected the expected power market volatility at dif-

ferent times throughout the sample period, from the beginning of

2008 until the end of 2013. We draw these exogenous shocks (news)

from the underlying skew-Student return distributions. We consider

news of the magnitude that occur two or three trading days per year.

Working with an asymmetric BEKK model provides us with an op-

portunity to distinguish between the e�ects of positive and negative

news, which we �nd highly relevant. We develop the VIRF analysis

along several dimensions. First, we compute the average responses

in power variance for each year. Second, we examine the responses

for di�erent horizons, ranging from one day ahead to three calendar

months ahead. This allows us to measure not only the strength of the

spillover e�ects, but also the speed of their decay. Lastly, we com-

pare the size of the cross-market e�ects to the size of the own-market

variance responses.

The results show that positive news in gas and coal (i.e., news

corresponding to an unexpected price increase) tends to generate sig-

ni�cant volatility spillovers to power. On the other hand, negative
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news (i.e., a price decrease) has only weak e�ects. For carbon, the

story is di�erent. Here, neither positive nor negative news generated

any spillovers to the variance of power during the �rst three years of

our sample period, 2008 � 2010. However, during 2011 � 2013, we �nd

that both large upward and downward moves in the carbon market

lead to signi�cant responses in power market volatility.

Overall, there is a lot of variation in the strength of the spillover

e�ects, both over time and across markets. We �nd a day-ahead

increase in the expected power variance following the positive news

in coal to range between 12% and 25% on average for di�erent years,

with a few extremes of up to 50%. The response to the positive

news in gas is generally weaker, ranging from 3% in 2012 to 16% in

2010 on average, except for 2013, when we do not �nd any positive

spillover e�ect. These results are consistent with the developments

in the underlying markets. For example, we observe that the role

of gas in the German power generation mix declines, and that spark

spreads indicating the pro�tability of gas-�red power plants enter the

negative region from the beginning of 2013. In contrast, coal remains

an important fuel for power generation, and dark spreads stay positive

throughout the sample period. Despite lower magnitude spillovers

from gas, we �nd that it takes longer on average for the e�ect of news

in gas to die out compared to the e�ect of news in coal.

Comparing the responses that exogenous news generates in the

power variance to the responses in the own-market variance reveals

that the cross-market e�ects are far from trivial, and taking them into

account in practical applications can clarify a bigger picture. Distin-

guishing between the e�ects of price increases and price decreases in

the asymmetric setting provides further valuable insights.

The remainder of this chapter is organized in three sections. Sec-

tion 2 presents the VIRF methodology. We address the properties of

the function in detail, discuss its interpretation, and explain how we
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compute it. Section 3 contains the empirical results, while Section

4 concludes. The analysis in this study is based on the VAR-BEKK

model estimated previously using the sample of daily returns on the

front-year futures contracts and presented in Chapter 2.

2 Volatility impulse response function

This section presents the methodology that we use to analyse volatil-

ity transmission in the German energy markets. We start by provid-

ing a general background of the impulse response analysis, followed

by the de�nition of the VIRF. Next, we describe how we construct

the independent shocks and how they propagate through the system.

We address the properties of the VIRF, which are important for in-

terpreting the results. Finally, we explain the numerical computation

procedure.

2.1 Background

In the general context, an impulse response function measures the

time pro�le of the e�ect of a shock on the behaviour of a series.

Sims (1980) introduced the concept of an impulse response for linear

systems, such as vector autoregressive (VAR). The impulse response

function was designed to provide an answer to the question of �What

is the e�ect of a shock of size δ hitting the system at time t on the

state of the system at time t + n, given the information available at

t − 1?� It was traditionally assumed that no other shocks occurred

between t and t + n, i.e., the future shocks were `switched o�'. As

impulse response functions were applied to non-linear systems (see,

e.g., Gallant et al., 1993), the traditional approach of choosing a zero-

shock baseline led to several conceptual problems, even in univariate

settings. Potter (1994) highlights that non-linear models produce im-

pulse responses that are history- and shock-dependent, which means

55



Chapter 3

that the traditional impulse response function depends on t and δ,

in addition to n. A further problem of composition dependence was

discovered in multivariate systems, where it was impossible to disen-

tangle the e�ect of a shock to a single variable from the e�ects of the

contemporaneous shocks to other variables.

To address these limitations, Koop et al. (1996) develop the con-

cept of a Generalized Impulse Response Function (GI). The GI is

treated as a random variable de�ned on the underlying probability

space of the time series under consideration. For the case of an ar-

bitrary current shock εt and history ωt−1, the GI for each horizon

n = 0, 1, ... is given by the following di�erence:

GI(n, εt, ωt−1) = E(Yt+n | εt, ωt−1)− E(Yt+n | ωt−1), (3.1)

where Y is the k × 1 conditional mean vector to forecast. Taking

the expectations solves the problem of treating future shocks since

their e�ects are averaged out. The �rst expectation represents the

state of the system conditioning on the history and the current shock,

while the second expectation conditions on the history only and serves

as the baseline. Both the current shock and history are treated as

realizations from the stochastic data generation process (DGP) of Y ,

which means that both expectations in Eq. (3.1) are realizations of

random variables themselves.

Hafner and Herwartz (2006) extend Koop et al.'s (1996) method-

ology to multivariate GARCH models. Rather than looking at the

e�ect of a shock on the conditional mean process, they consider the

e�ect on the conditional covariance, and put forth the concept of

a Volatility Impulse Response Function (VIRF).1 VIRF is used to

1Lin (1997) provides an alternative methodology that applies Gallant et al.'s
(1993) approach to multivariate GARCH models. The impulse response func-
tion suggested in Lin (1997) is de�ned as the impact of a small perturbation in
a historic innovation on the future predicted volatility (i.e., a derivative w.r.t.
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quantify the impact of independent shocks on volatility.

2.2 De�nition of VIRF and its properties

In this study, we de�ne a VIRF at time t and horizon n following

Hafner and Herwartz (2006):

V IRF (t, n, ωt−1, εt) = E [vech(Ht+n) | ωt−1, εt]−E [vech(Ht+n) | ωt−1] ,

(3.2)

where Ht+n is the k × k conditional covariance matrix at time t+ n,

and vech() is the operator that stacks the lower triangular fraction of

a k×k matrix into a k∗ = k(k+1)/2 dimensional vector. Similarly to

the GI in Eq. (3.1), the �rst expectation in Eq. (3.2) is conditioned on

the history ωt−1 and the current shock to the mean system εt,2 while

the second expectation is conditioned only on the history and provides

the baseline. The natural choice of the history is ωt−1 = {εt−1, Ht−1} .
Since Ht−1 depends on all previous innovations, the history becomes

the set of all past innovations: ωt−1 = {εt−1, εt−2, ..., ε1}. Thus,

the VIRF measures the response to the shock εt in variances and

covariances by comparing their expected values at time t + n, with

and without speci�c information about the shock. This response is

the average of what might happen given the past and the present. In

our case of four commodities, the VIRF as given by Eq. (3.2) is a

10×1 vector, with four entries representing the responses in variances

and six entries representing the responses in covariances.

When interpreting the results of the VIRF analysis, it is important

to understand the following properties, which distinguish VIRF from

the traditional impulse response functions in linear systems. First, in

symmetric GARCH models, VIRF is an even function, i.e., the e�ect

historic innovation), and is fundamentally di�erent from the approach in Hafner
and Herwartz (2006).

2See Eq. (2.1) and Eq. (2.2) for the conditional mean system.
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of a positive shock is the same as the e�ect of a negative shock of the

same size. In this study, however, we apply the VIRF analysis to an

asymmetric BEKK model, and thus are able to distinguish between

the e�ects of positive and negative shocks. Secondly, VIRF is not

a homogeneous function of any degree. However, it is a monotonic

function: a larger shock generates a larger response, all else being

equal. Finally, VIRF depends on the history of the process through

the state of the covariance matrix when an independent shock occurs,

which is explained in detail in the following subsection.

2.3 Construction of independent shocks

Naturally, we can choose both εt and ωt−1 from the estimated con-

ditional covariance model, leading to an analysis of the impact of a

historical shock given the observed volatilities and correlations on the

date of the shock event. However, we can obtain a bigger picture by

constructing the random shocks from the distribution of the under-

lying time series, while still conditioning on the observed covariance

matrix. This allows us to �nd the potential e�ect of a large exogenous

shock on every day during the sample period, rather than only looking

at those few days when some abnormal events actually occurred.

The next question is how to produce the independent shocks that

hit the system and how to perturb it such that it is possible to quantify

the impact of a particular variable-speci�c shock. Here, we use the

spectral decomposition of the conditional covariance matrix. First,

we assume that one of the commodity markets is hit by an exogenous

shock, which we refer to as `news'. Accordingly, the news vector z
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has a non-zero element in one position and zero elements elsewhere:

z = (z1, 0, 0, 0)′

z = (0, z2, 0, 0)′

z = (0, 0, z3, 0)′

z = (0, 0, 0, z4)′ ,

where zi denotes news in the return of commodity i = 1, ..., 4; gas,

power, coal, and carbon. In the spirit of Koop et al. (1996) and

Hafner and Herwartz (2006), we treat z as a random variable, and its

realizations are drawn from the DGP of the underlying time series. In

Chapter 2, we de�ne the multivariate skew-Student distribution with

independent components of Bauwens and Laurent (2002, 2005) for

the vector of innovations. Therefore, we can draw the news zi from

the marginal densities using the estimated skewness and degrees of

freedom parameters.3 We consider the 99% and the 1% quantiles in

the news distributions, which we refer to as positive news and negative

news, respectively.4 Therefore, the markets, on average, experience

news of this magnitude two or three trading days per year, both for

positive and negative news. Positive news corresponds to unexpected

price increases, while negative news can be thought of as unexpected

price decreases. Note that the news vectors are time invariant because

the marginal densities are standardized w.r.t. the mean and variance,

and have constant higher moments.

3See Eq. (2.6) for the joint density function, obtained as the product of indepen-
dent marginal densities.

4The model-implied 99% quantiles (positive news) are z1 = 3.191, z2 = 3.169,
z3 = 2.968, and z4 = 2.908. The 1% quantiles (negative news) are z1 = −2.638,
z2 = −2.706, z3 = −3.013, and z4 = −3.062. The 99% quantile for a given
commodity is numerically di�erent from the 1% quantile due to the estimated
non-zero skewness. Gas and power are right-skewed and, therefore, the 99%
quantile is larger in absolute terms than the 1% quantile. For coal and carbon,
the opposite is true.
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The news originates in one of the commodities, and then propa-

gates through the non-linear BEKK system to generate a system-wide

shock εt:

εt = H
1/2
t z = (ε1t, ε2t, ε3t, ε4t)

′ , (3.3)

where H1/2
t is the `square root' of the covariance matrix, calculated

using the spectral decomposition. In contrast to the news, which is

time invariant, the system-wide shock induced by the news depends

on the state of the system at a particular point in time. In general, all

elements in εt are time-varying and non-zero due to the dependence

structure imposed by the time-varying and non-diagonal covariance

matrix Ht.

2.3.1 An illustration

Consider the following simpli�ed example providing the intuition be-

hind our news propagation mechanism, and the implications for the

VIRF analysis. Let us assume we have only two commodities: gas (1)

and power (2). The gas market is hit by an exogenous shock, leading

to an unexpected increase in the gas price. Thus, the news vector

z is (3.19, 0)′, where the �rst element is the 99% quantile from the

assumed distribution for the gas return series. Next, assume that at

a given point in time, the conditional covariance matrix is

H =

 σ2
1 σ12

σ12 σ2
2

 =

4 1

1 4

 .

This corresponds to the correlation of 0.25. Applying the spec-

tral decomposition of H and using Eq. (3.3) gives the corresponding

system-wide shock ε1 = (6.33, 0.80)′.

Consider next that at some other point in time, gas volatility is

higher, while the correlation between power and gas remains the same,
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and the conditional covariance matrix is

H =

 9 1.5

1.5 4

 .

In this case, the corresponding shock is ε2 = (9.52, 0.96)′.

Finally, consider the third case where both power and gas volatility

remain the same, but the correlation between the two series increased

from 0.25 to 0.50:

H =

4 2

2 4

 .

This yields ε3 = (6.16, 1.65)′. Because the covariance matrix is

di�erent in the three cases above, the expected covariance matrix at

the next point in time is also di�erent, both with the information

about the news z and without it. Recall that in the asymmetric

BEKK(1,1) model with k variables, the conditional covariance matrix

at time t is de�ned as follows:

Ht = C ′C +A′εt−1ε
′
t−1A+B′Ht−1B +D′ζt−1ζ

′
t−1D,

where A, B, C, and D are k × k matrices, εt−1 is the k × 1 vector of

error terms, and ζt−1 is a k × 1 vector of asymmetric error terms.

To investigate the behaviour of the VIRF in this illustration, we

use the following parameters:5

A =

0.19 0.03

0.03 0.17

 ;B =

 0.98 0.01

−0.02 0.96

 ;D =

 0.06 −0.09

−0.01 0.05

 .

We can now compute both expectations in Eq. (3.2) and evaluate

5Here we are using a subset of the actual estimated parameters presented in Table
2.7. C-matrix is set to a zero-matrix for simplicity.
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the VIRF numerically. In this example, we consider the day-ahead

VIRF only, that is, the horizon n is equal to 1. The exact procedure

is described in the next subsection, and the result for each of the

three cases is a 3 × 1 vector with elements measuring the impact

of the independent news z on gas variance, covariance between gas

and power, and power variance. We investigate the impact on power

variance only, and the results are as follows:

E(σ2
2 | ε1, ω1)− E(σ2

2 | ω1) = 4.14− 3.91 = 0.23,

E(σ2
2 | ε2, ω2)− E(σ2

2 | ω2) = 4.65− 3.93 = 0.72,

E(σ2
2 | ε3, ω3)− E(σ2

2 | ω3) = 4.25− 3.94 = 0.31.

To facilitate comparability, we suggest normalizing the obtained

responses with respect to the baseline expectations, thus obtaining

the relative measures. In particular, we �nd that in the �rst case, the

expected power variance is 5.88% larger conditioning on the shock ε1

and the history ω1 than conditioning on the history only. The percent-

age responses for the second and third cases are 18.32% and 7.87%,

respectively. We can see that both higher gas variance (the second

case), and higher gas/power correlation (the third case), amplify the

e�ect of the news in gas z on the response in power variance. These

results are in line with the intuition that larger volatility spillover

e�ects occur at more turbulent times and between highly correlated

markets.

2.4 VIRF computation via Monte Carlo integration

Hafner and Herwartz (2006) derive analytical VIRF expressions for

the general vec representation of symmetric multivariate GARCH

models. However, we work with an asymmetric BEKK model that

lacks analytical expressions for the expectations in Eq. (3.2). There-

fore, we perform the integrations numerically using the Monte Carlo
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techniques outlined in Koop et al. (1996).

To calculate the VIRFs, we proceed in two steps:

1. Construct shocks εt for each trading day t corresponding to

positive and negative news zi for each commodity. This gives two

time series of shocks for each commodity (in total, eight time series

of shocks).

2. Calculate a VIRF for each trading day t for each time series

of shocks and for horizons from n = 1 to n = 63 (i.e., approximately

three calendar months ahead).

In step two, we need to integrate out the e�ects of the future

shocks from t + 1 to t + n. To perform the numerical integration,

we simulate future random realizations of the vector of innovations.

In our case, each `future' consists of 63 realizations. We need 62

random shocks in order to iterate the BEKK process forward up to

t + 63 in the �rst expectation (for a given t, ωt−1, and εt), and an

extra random shock for the second expectation, where we condition

on the history only. By using common random shocks to evaluate

both expectations, we ensure that the di�erence between them in a

single future scenario is driven by the di�erent conditions at time t

only. Further, using common random numbers is a variance reduction

technique in stochastic simulation.

We draw the random shocks from the underlying standardized

marginal skew-Student densities using the following analytical quan-

tile function given in Laurent (2002):

F−1(p | ξ) =


ξ−1G−1( p

2
(1+ξ2))−m
s if p < 1

1+ξ2

−ξG−1( 1−p
2

(1+ξ−2))−m
s if p ≥ 1

1+ξ2

, (3.4)

where ξ is the skewness parameter, G−1 is the quantile function of the

original symmetric Student density (G being the cumulative distribu-

tion function, accordingly), and m and s are the mean and the stan-
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dard deviation of the non-standardized skew-Student density given

by Eq. (2.10) and Eq. (2.11), respectively.

For each of the eight time series of shocks constructed in the �rst

step, we create 20, 000 possible `futures', over which we take the aver-

ages.6 By the Law of Large Numbers, these averages converge to the

conditional expectations required to calculate the VIRF. Each of the

20, 000 realizations of the right-hand side of Eq. (3.2) is conditioned

on the same shock εt and the same history ωt−1, but corresponds to

a di�erent future.

Finally, we normalize the variance responses for each commod-

ity with the corresponding initial baseline expected variance (i.e., the

baseline expectation at t + 1). This normalization creates a relative

response in the variances comparable over time and across commodi-

ties.

3 Results

We focus our empirical analysis on the transmission of news in gas,

coal, and carbon to the variance of power, and therefore what we

refer in this section as a VIRF is actually a single element in the

VIRF vector measuring the response in the variance of power.

We present two sets of complementary results based on the calcu-

lations outlined above. First, we show the average variance response

in power for each year, 2008 to 2013, for all horizons. We calculate

the yearly VIRFs by taking the average of the daily VIRFs over all

trading days each year. This yearly analysis gives an overall dynamic

picture of the strength of volatility spillovers between the di�erent

6We calculate a VIRF for each trading day from January 7, 2008, to October
4, 2013. We cannot iterate the BEKK model outside the sample because we
need the actual covariance matrix to construct the shocks (futures) given the
simulated news. Therefore, for 2013, we calculate VIRFs up to and including
October 4, when there are 63 trading days remaining in the sample.
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commodities. It also provides us with insights into the speed of decay

in the responses when the horizon increases. Second, we show the

day-ahead responses in power variance for each trading day in the

sample. This daily time series analysis gives a di�erent perspective of

the time variation in the news transmission, which allows us to trace

changes in the volatility spillovers over time in more detail, and to

connect these changes to speci�c market events.

3.1 Volatility transmission patterns: The yearly per-

spective

We plot the yearly VIRFs in Figures 3.1 � 3.3. These plots provide

us with an insight into the nature of the spillover e�ects from three

perspectives. First, we can track changes over time. Second, since

the normalized VIRFs are expressed as percentages, we can compare

the strength of the news transmission between di�erent commodities

in a straightforward way. It is also possible to determine the half-life

of a shock and assess how fast the system recovers after an abnormal

event. Finally, we di�erentiate between unexpected price increases

(positive news) and unexpected price decreases (negative news).

Consistent with the estimation results from Chapter 2, Figures

3.1 � 3.3 suggest that coal has the largest e�ect on power volatility

throughout the sample period. For example, in 2008, positive news

in the coal market resulted in a 25% larger than otherwise expected

day-ahead variance on average in the power market compared to the

corresponding e�ect of less than 5% for positive news in the gas mar-

ket. It is worth noting that the estimated volatility of gas and coal is

very similar overall during the sample period (see Figure 2.4).
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Response in the variance of power to news in gas, %
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Figure 3.1: Response in power variance to news in the gas market.
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20 40 60

Horizon n, days

-5

0

5

10

15

20

25
Price decrease

2008
2009
2010
2011
2012
2013

20 40 60

Horizon n, days

-5

0

5

10

15

20

25
Price increase

2008
2009
2010
2011
2012
2013

Figure 3.2: Response in power variance to news in the coal market.
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Response in the variance of power to news in carbon, %
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Figure 3.3: Response in power variance to news in the carbon market.

Further, we can see in Figure 3.1 that positive news in gas leads

to much lower responses in the power variance towards the end of

the sample period, with the 2013 VIRF having a strikingly di�erent

pattern. Technically, a negative response means that the expected

power variance, given the news in gas, is lower than what we would

otherwise expect it to be. Economically, this means that an abnormal

event in the gas market does not lead us to revise our expectations

about future volatility in the power market upwards. We discussed

previously that spark spreads were below zero from the beginning of

2013, and that the correlation between gas and power declined sharply

(see Figures 2.2 and 2.5). A negative gas-to-power VIRF in 2013 is

another manifestation of the weakening link between the two markets.

We �nd news in gas to have a longer-lasting e�ect, on average,

than news in coal. It takes approximately 14 trading days for a power

VIRF to decrease by half after news in gas, compared with nine trad-
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ing days after news in coal. News in carbon has the shortest e�ect

on expected power variance, with an average half-life of four trading

days.

3.2 Day-ahead variance responses: The daily perspec-

tive

Figure 3.4 displays the evolution of the day-ahead responses in the

power variance over the sample period. We can see that the spillovers

to the power variance resulting from news in all other commodities

show considerable variation over time.
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Figure 3.4: Time series of day-ahead variance responses in the power
market.

Econometrically, these varying volatility responses are a conse-

quence of the complex dynamic interrelations between the di�erent
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3.2 Day-ahead variance responses: The daily perspective

commodities in the BEKK system. As illustrated earlier on a simpli-

�ed example, one particular aspect of this is the time-varying corre-

lations. Low correlations lead to weaker shock transmission, all else

being equal.

Interestingly, the response in power variance is much larger after

positive news than after negative news in both gas and coal through-

out the sample period. This result makes sense because increases in

fuel prices have a negative e�ect on producers' pro�t margins. For

carbon, the story is di�erent. There are no large di�erences in the

responses to positive and negative news.7 We see no signi�cant dif-

ference during 2008 � 2011, while during 2012 � 2013, negative news

has a slight tendency to produce higher VIRFs. However, it is only

during the latter part of the sample period that the carbon news leads

to spillovers of any signi�cant magnitude with a large daily variation.

This increase in spillovers from carbon roughly coincides with a si-

multaneous, and signi�cant, increase in the volatility of carbon (see

Figure 2.4). Recall from an illustration in Subsection 2.3.1 that this

phenomenon is consistent with our model and how we specify the co-

variance matrix. Thus, while the increase in carbon volatility may be

the cause of the increase in VIRFs seen in 2012 � 2013, the underly-

ing economic reasons for the patterns we see in response to positive

versus negative carbon news are much harder to identify.

As the lower-right panel in Figure 3.4 indicates, the day-ahead

response in power variance to own shocks is, on average, around 9%

for negative news and around 14% for positive news on average. We

can see that responses in power variance to news in other energy

markets are more volatile than responses to own news, yet at certain

times much stronger.

7Note also the lower absolute value of the spillover coe�cient d42 = −0.0169,
representing the asymmetric spillover e�ect from carbon to power compared to
d12 = −0.0869 for gas and d32 = 0.1378 for coal (see Table 2.7).
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Investigating how gas, coal, and carbon markets react to own

shocks can provide an additional feel for the strength of the cross-

market e�ects. Figure 3.5 displays the evolution of the day-ahead

responses to own-market shocks. We can see that positive news orig-

inating in the coal market leads, on average, to a 20% higher than

otherwise expected coal variance. Although the corresponding re-

sponse in power variance (the upper-right panel in Figure 3.4) shows

high variation, it is above 20% during many periods. This reveals that

volatility spillover e�ects in the energy markets are not trivial. We

believe that the bene�ts in terms of the explanatory and predictive

power of taking them into account in practical applications outweigh

the costs of increased model complexity.
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Figure 3.5: Time series of own-market day-ahead responses in variance.
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3.3 Sector-wide news and critical news

3.3 Sector-wide news and critical news

We assumed previously that one of the markets is hit by exogenous

price news, and investigated the spillover e�ects to the power market.

While the main focus of this study is on comparing the strength and

dynamics of idiosyncratic shock transmission from fuels and carbon

to power, we also consider the case when all four commodities expe-

rience a tail event simultaneously. This case, which we refer to as

`sector-wide news', corresponds to the news vector z having all ele-

ments equal to the 99% or the 1% quantiles in the corresponding news

distributions. We think of it as price news to the entire energy sector,

as opposed to news speci�c to a certain market, such as an e�ect of

a policy announcement in the carbon market, for instance.

Figure 3.6 displays the yearly power VIRFs resulting from concur-

rent positive and negative news in all commodities.
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Figure 3.6: Response in power variance to sector-wide news.
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We can see that these VIRFs have less variation on a yearly basis,

especially at the horizon of up to �ve days, compared to the ones in

Figures 3.1 � 3.2, although we still observe weaker responses in 2013.

Sector-wide price increases have a greater impact on expected power

variance than sector-wide price decreases. If a 99% quantile news

event occurs simultaneously in all the four markets, we can expect

the day-ahead variance in the power market to increase by 180% �

210%, on average for di�erent years. We plot the corresponding daily

VIRFs in Figure 3.7.

2008 2009 2010 2011 2012 2013 2014
100

150

200

250
Day-ahead responses in power variance to sector-wide news, %

Price increase
Price decrease

Figure 3.7: Time series of day-ahead responses in power variance to
sector-wide news.

As Figure 3.7 indicates, the day-ahead variance responses are gen-

erally weaker in the second half of the sample period. This result is

partly due to decrease in volatilities in all markets except carbon (see

Figure 2.4), and partly due to decrease in correlations, as discussed
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3.3 Sector-wide news and critical news

previously.

We can gain another perspective by calculating the `critical news'

at time t required to generate a power variance response of zero at time

t+1. How large does news in gas, coal, and carbon have to be to obtain

a VIRF of zero? Recall that a VIRF of zero means a variance response

in power that is equal to the baseline expected power variance. These

critical news levels have to be calculated numerically, and we do so

for both positive (right-tail) and negative (left-tail) news. We report

the results as critical quantiles rather than actual news values because

this gives a more direct sense of the magnitude of news required to

generate a VIRF of zero. These quantile values can also be related to

the 99% and 1% quantiles we used in our previous VIRF calculations.

We report the results in Table 3.1, where we list the positive and

negative quantiles (as percentages) for all commodities and for each

year in our sample.

Table 3.1: Critical quantiles (%) in news distribution.

Positive News Negative News

Gas Coal Carbon Gas Coal Carbon

2008 98.12 92.49 99.42 0.56 1.54 0.72

2009 96.05 95.24 99.42 1.17 0.91 0.77

2010 94.73 94.90 99.57 1.35 0.47 0.56

2011 97.43 95.63 98.36 0.56 0.36 2.46

2012 98.32 94.40 98.15 0.25 0.38 3.17

2013 99.78 95.35 96.22 0.01 0.28 6.32

Note: The table shows critical quantiles in the news distribution for di�erent markets.
News of a lower magnitude does not lead to a higher than otherwise expected day-ahead
variance in the power market.

We observe that the news that makes the VIRF at t + 1 equal

to zero varies across commodities and over time. For example, gas in

2013 required large positive and negative news (at the 99.78% quantile

in the right tail and the 0.01% quantile in the left tail). This is a
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manifestation of a very weak link between the power and gas markets

at that time. On the other hand, for carbon in 2013, we need only

news at the 95.35% level in the right tail and 6.32% in the left tail.

4 Summary and conclusions

In this study, we investigate the transmission of news and volatil-

ity spillovers between electrical power, gas, coal, and carbon in the

German energy market during 2008 � 2013. We base our methodol-

ogy on the VIRF concept introduced in Hafner and Herwartz (2006).

However, the lack of analytical expressions for asymmetric GARCH

models that we work with requires us to compute VIRFs numerically,

following the earlier work of Koop et al. (1996) on impulse response

functions in the conditional mean systems. The VIRF measures the

impact of an independent shock on the conditional covariance matrix

given the history.

We focus our analysis on the impact of exogenous large news in the

gas, coal, and carbon markets on the expected volatility in the power

market. We distinguish between the e�ects of positive news, cor-

responding to price increases, and negative news, representing price

decreases. Further, we calculate the VIRF for horizons from one day

to three calendar months following the news event. The results in-

dicate that spillover e�ects show large variation across commodities

and over time. The spillovers from coal are substantial throughout

our sample period, but with signi�cant time variation on a daily basis.

The spillovers from gas are generally weaker and are declining toward

the end of the sample period, which is consistent with gas becoming

an unpro�table generation technology and playing a less important

role in the German power generation mix. Despite the lower magni-

tude spillovers from gas, we �nd that it takes longer on average for

the e�ect of news in gas to die out compared to the e�ect of news in
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coal. Spillovers from carbon have the fastest decay and were more or

less nonsigni�cant until 2011, when they started to show more varia-

tion and a larger impact. We �nd that positive news in gas and coal

markets leads to a much larger response in the variance of power com-

pared to negative news, generating only small or no spillover e�ects.

Distinguishing between the positive and negative news appears to be

less important for the carbon market.

The overall implication is that modelling the volatility in the

power market, whether for explanatory or forecasting purposes, gains

substantially from incorporating the information from the fundamen-

tally related fossil fuel and carbon markets.
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Temperature, and Hydrological

Balance with a View towards

Scenario Analysis

Abstract

This study presents a model for the joint dynamics of power price,
temperature, and hydrological balance, with a view towards scenario
analysis. Temperature is a major demand-side factor a�ecting power
prices, while hydrobalance is a major supply-side factor in power mar-
kets dominated by hydrological generation, such as the Nordic market.
Our time series modelling approach coupled with the skew-Student
distribution allows for interrelations in both mean and volatility, and
accommodates most of the discovered empirical features, such as pe-
riodic patterns and long memory. We �nd that in the Nordic mar-
ket, the relationship between temperature and power price is driven
by the demand for heating, while the cooling e�ect during summer
months does not exist. Hydrobalance, on the other hand, negatively
a�ects power prices throughout the year. We demonstrate how the
proposed model can be used to generate a variety of joint tempera-
ture/hydrobalance scenarios and analyse the implications for power
price.
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Chapter 4

1 Introduction

In this study, we develop a model for the joint evolution of the spot

electrical power price, outdoor temperature, and hydrological balance.

The model is relevant for power markets with a large share of hydro-

logical generation, such as the Nordic market, and o�ers a wide range

of opportunities for scenario analysis.

Consider the following example illustrating the fundamental rela-

tionship between power price, temperature, and hydrobalance. En-

ergy producers and retailers plan their business activities based on the

estimated demand for power (load) for a certain time horizon. During

the heating seasons, the load is driven to a large extent by temper-

ature. If a particular season is actually colder than expected, more

power than planned will be consumed for heating purposes. Temper-

ature a�ects demand, but to understand the implications for prices,

we also need to consider the supply side of price formation. We de�ne

hydrobalance as the measure of the potential capacity of a hydrolog-

ical power generation system. If a year has been relatively wet, with

lots of precipitation, i.e., hydrobalance is high, this excess demand

may be covered at a low cost without moving the price. On the con-

trary, a combination of low temperature and low hydrobalance is a

major source of price risk in power markets. Therefore, it is natural

to model these three variables as a system.

Both temperature modelling and hydrological modelling are large

research areas on their own. Among the literature related to power

markets, Halldin (2005) studies modelling of the time series of water

in�ows and stochastic optimization of a hydro-power system. Green

(2015) shows that the intra-daily pro�les of the Nord Pool system

price are a�ected by hydrological balance and develops an hourly

forward curve model with hydrological dependence. Bivariate power-

temperature models have been developed in Benth et al. (2012) and
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Caporin et al. (2012), for the purpose of pricing an exotic type of

weather derivatives called energy quanto options. This study adopts

an econometric modelling approach, similar in certain respects to that

of Caporin et al. (2012), introducing the third dimension of hydrobal-

ance into the system.

We analyse both the univariate properties of our three data series,

and the dependencies between them in detail. The model is identi-

�ed within the Vector Autoregressive Fractionally Integrated Moving

Average (VARFIMA) framework, coupled with a time-varying covari-

ance process of Baba-Engle-Kraft-Kroner (BEKK) type. The need

for fractional integration is motivated by long memory, observed in

all series. In addition to the stochastic part, our model contains a

deterministic component capturing the yearly periodic patterns in

power prices and temperatures. Due to the highly pronounced non-

normal statistical properties of our data, we apply a �exible multi-

variate skew-Student distribution proposed in Bauwens and Laurent

(2002, 2005), while treating the normal distribution as the benchmark

for comparison. The model allows for interrelations, both in means

and volatilities, restricted such that power price can be a�ected by

temperature and hydrobalance, but not the other way around.

We �nd that in the Nordic market, the relationship between tem-

perature and power price is driven by the demand for heating, while

the cooling e�ect during summer months does not exist, likely due

to mild temperature conditions. Hydrobalance, on the other hand,

has a signi�cant inverse e�ect on power prices throughout the year.

Further, estimation results indicate the existence of volatility spillover

e�ects from hydrobalance and temperature to power. Correlations be-

tween power and temperature show seasonal patterns, ranging from

−0.5 during winter periods to 0 during summer periods. Correla-

tions between power and hydrobalance oscillate around an average

level of −0.25. Finally, the simulation exercise reveals the bene�ts of
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skew-Student distribution in reproducing the distinct non-Gaussian

properties of both power price and meteorological series.

The remainder of the chapter is organized as follows. Section 2

dscribes the data and the results of preliminary data analysis. Section

3 presents the modelling framework, as well as the identi�cation and

estimation procedure. The empirical results are discussed in Section

4. Section 5 addresses the simulation from the model and provides

a scenario analysis example, which demonstrates how our model can

be utilized to generate a variety of joint temperature/hydrobalance

scenarios and analysing the implications for power prices. Section 6

contains a summary and concluding remarks.

2 Data and preliminary analysis

This section describes the data and the results of preliminary data

analysis, which lays the foundation for our choice of modelling frame-

work. We �rst investigate the properties of the univariate series that

we want the model to reproduce, and then discuss the desired depen-

dence structure.

2.1 The dataset

Our dataset consists of daily observations of the power price series,

the temperature series, and the hydrobalance series. Since the model

is designed speci�cally for power markets with a large share of hydro-

logical generation, we use Nordic market data.1 The sample period

spans from January 1, 2008, to February 21, 2016.

We obtain the power price data from the Nordic power exchange,

1Hydro power is the largest generation source in terms of installed capacity in
the Nordic power market. According to the Nord Pool, in a year with normal
precipitation, hydro power accounts for half of Nordic countries' demand (98%
in Norway, in particular).
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the Nord Pool. The Nord Pool Elspot is the spot market where agents

trade power on an auction basis for physical delivery during each hour

of the following day, which is why it is often referred to as the day-

ahead market. The daily spot power price is the arithmetic average

across 24 hourly prices, and is quoted in EUR/MWh. Being the com-

mon marketplace for the Nordic (Denmark, Finland, Norway, and

Sweden) and the Baltic (Estonia, Latvia, and Lithuania) countries,

Nord Pool is divided into a number of bidding areas, which can have

di�erent prices in the presence of transmission constraints. In addi-

tion to these area prices, all participating countries share a common

system spot price, calculated under the assumption of unconstrained

transmission capacity. In this study, we consider the Nord Pool sys-

tem spot power price since it is the reference price for trading and

clearing the majority of �nancial contracts.

The temperature and hydrobalance data are obtained from Thom-

son Reuters. We use the daily average temperature (DAT) in Swe-

den, which is the population-weighted average across a basket of sev-

eral cities. Alternatively, we could consider the average temperature

across all Nord Pool area countries, but since the Baltic countries

joined the market during 2010 � 2013, it is more straightforward to

use a single country as a proxy for the whole region. This does not

lead to any loss of generality because temperature series in the indi-

vidual Nordic and Baltic countries are highly correlated, and Sweden

would have had the largest population weight in the index anyway.

The daily average temperature is the average of the minimum and

the maximum temperature during a given day measured in degrees of

Celsius.

Finally, the hydrobalance series represents the deviations of the

total hydrological resources from the seasonal normal level measured

in terms of energy capacity (TWh). The total hydrological resources

are de�ned as the sum of the water reservoir content, the snow pack,
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and soil water, and re�ect the available capacity of the hydro-power

system. The seasonal normal levels of the hydrological resources for

each day of a year are computed by Thomson Reuters based on the

1981 � 2005 period, and thus account for recent weather trends. Con-

sequently, a positive (negative) hydrobalance value on a given day

indicates that the hydrological condition is wetter (drier) than it has

been on average for the same day of a year during 1981 � 2005. Most

hydrological data are usually available at a weekly granularity, but

Thomson Reuters provides daily Nordic hydrobalance series starting

from 2008. This series contains more fundamental information than

if we were to interpolate between the weekly observations, which mo-

tivates our choice of the sample period start.

2.2 Data analysis

Figure 4.1 plots the power price series along with the �tted seasonal

mean function given by Eq. (4.1) below.
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Figure 4.1: Time series of Nord Pool power system spot prices.
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We can clearly see a decreasing trend, as an increasing amount of

low marginal cost wind, solar, and biomass generation displaces coal

and gas technologies. Another important feature is yearly seasonal

patterns with higher prices during winter periods related to demand

for heating and shorter day-light length. Seasonal patterns can be

captured by a periodic function, such as sine or cosine. In addition,

day-of-the-week e�ects in power prices have been widely documented,

with lower prices observed on weekends and holidays due to limited

business activity (see, e.g., Lucia and Schwartz, 2002). Therefore, we

choose the following speci�cation for power seasonal mean at time t,

denoted Λ1,t:

Λ1,t = λ1,1 + λ1,2 cos(
2π

365
(t− λ1,3)) + λ1,4t+ λ1,5Dt, (4.1)

where λ1,i, i = 1, ..., 5, are the parameters to estimate, t is time mea-

sured in days, and Dt is a dummy variable taking a value of 1 if day t

is a non-business day (i.e., a weekend or a holiday), and 0 otherwise.

λ1,1 represents the overall (non-seasonal) average price level, λ1,2 is

the amplitude of the mean price, and λ1,3 is the phase angle. The am-

plitude of a cosine wave re�ects how large the distance between peaks

and troughs is. A phase angle shifts the time to adjust for the fact

that yearly maximum and minimum mean prices do not necessarily

have to occur on January 1 and July 1, respectively. Note that the

period of oscillation is equal to one year, or 365 days, ignoring leap

years.

A closer look at Figure 4.1 reveals that power prices can have

large upward spikes, followed by fast mean reversion. Spikes typically

occur during winter seasons if high demand for power coincides with

an unexpected supply-side shock, like an outage at a major power

plant. It is worth noting that spikes are relatively less dramatic in

power markets with a large share of hydro generation, such as the
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Nordic market, since water reservoirs can serve as a safety bu�er

against unforeseen imbalances between supply and demand. This, of

course, heavily depends on hydrological conditions and whether there

is enough excess capacity in the hydro-power system to provide this

sort of safety cushion.

The temperature series is plotted in Figure 4.2, along with the

�tted seasonal mean function given by Eq. (4.2) below.
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Figure 4.2: Time series of daily average temperature in Sweden.

We adopt the following speci�cation for temperature seasonal mean

at time t, denoted Λ2,t:

Λ2,t = λ2,1 + λ2,2 cos(
2π

365
(t− λ2,3)), (4.2)

where λ2,1 is the overall (non-seasonal) average level of the series,

λ2,2 is the amplitude of the mean temperature, and λ2,3 is the phase
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angle. Alaton et al. (2002) document a small yet statistically signif-

icant increasing linear trend in Stockholm temperatures during 1957

� 1997, which is attributed to global warming and urbanization. We

do not �nd such an e�ect in our sample, probably since we are look-

ing at a much shorter time span. Since our model is not meant for

multi-year forecasts, we omitted the linear trend term. Benth and

�altyt
e-Benth (2005) reach the same conclusion while examining the

Norwegian temperature data during 1990 � 2003.

We form de-seasonalised power price and de-seasonalised temper-

ature series by subtracting from the original series Λ1 and Λ2, respec-

tively. Further analysis in this section is concerned with the properties

of de-seasonalised series.

Finally, we examine hydrobalance. Note that hydrobalance is a

series of deviations from the normal state, and therefore should have

a long-run mean level of zero, assuming that the chosen normal state

is representative of recent dynamics, or stable over long periods of

time. However, when looking at shorter horizons, the sample mean

can move away from zero, as is the case in our sample. As Figure

4.3 shows, dry periods are more common than wet periods during the

sample.

We can also see how extremely persistent hydrological condition is:

once a trend is established, it might take months for hydrobalance to

revert back to zero. It is also fairly uncommon for the series to change

signs within a single year; therefore, it makes sense to classify the

whole years as `wet' or `dry'. Nevertheless, it is by no means binary,

and a wide range of possible scenarios are likely. The hydrobalance

series in itself is not seasonal, although the total hydrological resources

do exhibit strong yearly seasonal patterns, with water reservoirs being

gradually �lled after the spring �ood and melting of the snow pack.
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Figure 4.3: Time series of daily Nordic hydrological balance.

Table 4.1 contains the results of stationarity tests.

Table 4.1: Stationarity tests.

Power price Power log-price Temperature Hydrobalance

ADF −5.33∗∗∗ −6.48∗∗∗ −14.35∗∗∗ −2.27
KPSS 0.39∗ 0.33 0.36∗ 0.81∗∗∗

Sample size 2974 2974 2974 2974

Note: The table reports the results of stationarity tests. ADF refers to the Augmented
Dickey-Fuller test with the null hypothesis of a unit root. KPSS refers to Kwiatkowski
et al.'s (1992) test with the null of a stationary I(0) process. Stationarity tests for power
price, log-price, and temperature were applied to de-seasonalised series. The number of
lags in the ADF tests were selected based on Schwartz Information Criterion. KPSS tests
used the Bartlett kernel with Newey-West automatic bandwidth selection. Superscripts
*, **, and *** denote statistical signi�cance at the 10%, 5%, and 1% levels, respectively.

The presence of a unit root can be strongly rejected based on

the Augmented Dickey-Fuller test for all series except hydrobalance.
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Interestingly, the KPSS test with the opposite null hypothesis of sta-

tionarity can also be rejected for power price and temperature series,

although at the 10% signi�cance level only. Haldrup and Nielsen

(2006) report similar results in conducting a wide range of stationar-

ity tests on Nordic power prices, showing that neither I(0) nor I(1)

processes seem to be appropriate. Let us get further insights into

the time series properties of our data by examining Figure 4.4, which

plots the sample autocorrelation functions (ACFs) for de-seasonalised

power price, de-seasonalised temperature, and hydrobalance.
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Figure 4.4: Sample autocorrelation functions.

We can see slight peaks in power price ACF at lags 7 and 14,

which indicate the presence of weekly seasonal e�ects not captured

by Λ1. Hydrobalance shows an extremely high degree of persistence in

the autocorrelation function, typical for I(1) processes. Both power

price and temperature show a slow (hyperbolic) decay in autocorrela-
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tions that cannot be captured by traditional Autoregressive Moving

Average (ARMA) models. This type of behaviour is known as long

memory, or long-range dependence. Saying that a given process has

long memory means that the e�ect of a single shock is extremely per-

sistent. However, unlike in the case of a random walk, persistence can

be combined with mean-reversion in long-memory models. There is

no reason to assume that any of the series in question could wander

arbitrarily away from their fundamental mean levels, and therefore, a

model that enforces mean-reversion while allowing high shock persis-

tence appears to be a good choice.

Figure 4.5 illustrates the daily changes in de-seasonalised power

log-price (i.e., log-returns), de-seasonalised temperature and hydrobal-

ance.
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Figure 4.5: Time series of daily changes.

We can see pronounced clustering e�ects in power volatility, and

seasonal patterns in temperature volatility with peaks during winter
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periods. Daily hydrobalance �uctuations have notable positive skew-

ness, which suggests the need for a non-symmetric distribution. In

addition, the graph reveals a frequent occurrence of extreme observa-

tions in power log-returns.

2.3 Relationship between power price, temperature,

and hydrobalance

In the previous subsection, we investigated the properties of power

prices, temperature, and hydrobalance separately. We now discuss

how they are related, and the kind of dependence structure we want

our model to impose.

Temperature is the main demand-side stochastic factor a�ecting

power price. Temperature determines demand for heating during the

winter periods and demand for cooling during the summer periods.

Ebbeler, Benth and Kiesel (2014) �nd that the correlation between

de-seasonalised temperature and German power spot price is negative

in the winter months, and positive, though lower in magnitude, in the

summer months. Seasonal e�ects of this kind can be accommodated

in the linear model, either by allowing the temperature coe�cient

in the power mean equation to take di�erent values during cooling

and heating seasons, or by having a single temperature coe�cient for

the entire sample and an additional coe�cient for heating seasons

only. We test both speci�cations by regressing de-seasonalised power

log-returns on de-seasonalised temperature and �nd that there is no

extra heating season e�ect. In fact, temperature has no e�ect on

power evolution during summer months in our sample, so one could

argue that the entire e�ect is driven by demand for heating. When

considering October � March periods only, the estimated coe�cient is

negative and very close to the coe�cient for the whole sample period.

Thus, we conclude that Nordic summer temperatures are too mild to

generate any signi�cant cooling demand e�ect in the power market,

91



Chapter 4

and therefore, a single coe�cient for each temperature lag in the

power mean equation is su�cient.

Halldin (2005) discussed the inverse relationship between the Nordic

power price and the hydro reservoir level in the context of the stochas-

tic optimization of a hydro-thermal power system. We now compare

the Nord Pool system prices under di�erent hydrological conditions,

but the same demand conditions. Here, we use the Nord Pool con-

sumption data in addition to the data described previously. Figure

4.6 presents a scatterplot of power prices against power consump-

tion, where we group observation pairs depending on the hydrobalance

level. The red dots represent the lower quartile of hydrobalance, i.e.,

the driest 25% of days during the sample period. The blue crosses,

on the other hand, mark the upper quartile of hydrobalance, i.e., the

wettest 25% of days.

0.6 0.8 1 1.2 1.4 1.6

Power consumption, TWh

0

20

40

60

80

100

120

140

P
ow

er
 s

ys
te

m
 p

ric
e,

 E
U

R
/M

W
h

25% wettest days
25% driest days

Figure 4.6: Power price versus power consumption scatterplot.

It is evident that given the same consumption, power price is gen-
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3 The model

erally higher under dry hydrological conditions. This is explained

by the fundamentals of power price formation: as less hydro power is

available, more generation technologies with higher marginal costs are

utilised. In addition to a higher average price level, dry hydrological

conditions lead to an increased probability of extreme prices. Addi-

tional regression analysis reveals that the relationship between power

price and hydrobalance can be approximated su�ciently well by a

single linear term, and there seems to be no motivation for including

any non-linear e�ects.

To summarize, we would like the model to allow temperature and

hydrobalance to in�uence the power price dynamics, but not the other

way round. We expect a reasonable model to produce negative cor-

relations between power and hydrobalance. Further, we expect the

correlations between power and temperature to be negative during

the heating seasons and close to zero otherwise.

3 The model

This section presents the model for the joint evolution of power price,

temperature, and hydrobalance. We �rst describe the model in its

general form, and motivate how it is expected to capture the numerous

features discovered in the preliminary analysis. Further, we discuss

the model identi�cation and estimation methodology.

3.1 General framework

3.1.1 Conditional mean

Considering all of the theoretical and empirical arguments outlined

in Section 2, we suggest a model of the mean evolution of the system

within the Vector Autoregressive Fractionally Integrated Moving Av-

erage (VARFIMA) framework. Univariate ARFIMA processes are a
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well-known class of long-memory models, introduced by Granger and

Joyeux (1980) and Hosking (1981) as a generalization of the tradi-

tional ARIMA (p, d, q) model, which allows the di�erence parameter

d to take fractional values. Beran (1994) and Palma (2007) discuss

the statistical properties and inference for long-memory processes in

detail. Prior to becoming a subject of interest for econometricians, the

fractional behaviour of certain time series was extensively studied in

hydrology and climatology. The �rst published papers describing how

to test and model the long-range dependence date back to the 1950s,

and are concerned with modelling the in�ows of the river Nile (see

Hurst, 1951).2 Brody et al. (2002) document fractional behaviour in

the English temperature series. Haldrup and Nielsen (2006) explain

that I(d) processes with fractional d �t the power price data well in

the presence of long memory e�ects. Similar to this study, Caporin et

al. (2012) apply the VARFIMA framework to a joint model of power

prices and temperatures.

We denote the power log-price series by x1,t, the temperature series

by x2,t, and the hydrobalance series by x3,t. Their joint evolution is

governed by the following dynamic system:

Φ(L)∆(L)


x1,t − Λ1,t

x2,t − Λ2,t

x3,t

 = Θ(L)


ε1,t

ε2,t

ε3,t

 , (4.3)

Φ(L) = I−
p∑
j=1


φj11 φj12 φj13

0 φj22 0

0 0 φj33

Lj , Θ(L) = I+

q∑
k=1


θk11 θk12 θk13

0 θk22 0

0 0 θk33

Lk,

2Hurst was an English civil servant sent to Egypt as a hydrological consultant to
predict how much the Nile �oods from year to year. He developed rescaled range
statistics, which became known later as the Hurst's exponent (H), and is related
to the fractional di�erence parameter d.
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where Φ(L) is a restricted vector autoregressive (VAR) polynomial of

order p, with L denoting the lag operator (Ljxt = xt−j), and I denot-

ing a 3 × 3 identity matrix. ∆(L) is a diagonal long-memory matrix

with a typical diagonal element (1−L)di , di is a fractional di�erence

parameter for variable i; Θ(L) is a restricted vector moving average

(VMA) polynomial of order q; (ε1,t, ε2,t, ε3,t)
′ is the vector of innova-

tions; and �nally, Λ1,t and Λ2,t are the seasonal mean functions given

by Eq. (4.1) and Eq. (4.2), respectively. Recall that hydrobalance is

de-seasonalised a priori, representing the deviations of the total hy-

drological resources from the seasonal mean level. Φ(L) and Θ(L) are

restricted such that temperature and hydrobalance can a�ect power

prices, while the opposite is not possible.3 Note that in the process

of lag order selection, we will restrict Φ(L) and Θ(L) even further

to achieve the highest possible sparsity while retaining the essential

e�ects. The parameters di determine the long-range behaviour of the

series, while the parameters in Φ(L) and Θ(L), together with the lag

order p and q, determine the short-range properties.

The di�erence operator (1−L)d, for any real d, is an in�nite linear

�lter given by the following binomial expansion:

(1− L)d =
∞∑
k=0

(
d

k

)
(−1)kLk, (4.4)

with the binomial coe�cients
(
d
k

)
= d!

k!(d−k)! = Γ(d+1)
Γ(k+1)Γ(d−k+1) , where

Γ(·) denotes the Gamma function. Hosking (1981) shows that un-

der certain assumptions ensuring stationarity and invertibility, a frac-

tional process has in�nite moving average and autoregressive repre-

sentations with coe�cients based on the binomial expansion of the

di�erence operator. In practice, the truncated versions of these rep-

3It is reasonable to allow temperature to in�uence the evolution of hydrobalance
in the mean equation. However, since the primary focus of this study is power
price dynamics, we do not explore the e�ect of temperature on hydrobalance.
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resentations are often estimated with approximate maximum likeli-

hood methods. Not all fractionally integrated processes have long

memory. An I(d) process shows the long-memory property in the

form of hyperbolic autocorrelation decay rate only if d > 0. Further,

d < 1
2 corresponds to a stationary process with a �nite variance and

an integrable spectral density. For the range 1
2 ≤ d < 1, an I(d) pro-

cess is not stationary, but still mean reverting, and we can de�ne its

spectral density in a more general form, although not integrable (see

Beran, 1994, for details). Finally, d > 1 leads to a non-stationary and

non-mean-reverting case with long memory. Note that we can reduce

the case of d > 1 to one of the cases mentioned above by taking the

appropriate number of integer di�erences (e.g., if xt is I(1.2), then

(1− L)1xt = xt − xt−1 is I(0.2)).

3.1.2 Conditional covariance

The innovation process in our model follows a conditional distribution

with zero mean and time-varying covariance matrix Ht:

(ε1,t, ε2,t, ε3,t)
′ | ωt−1 ∼ D(0, Ht), (4.5)

where ωt−1 denotes the information set at t − 1, which constitutes

all past observations. The importance of modelling the time-varying

volatility both in �nancial and meteorological data is an established

fact. There is far less consensus, however, on what the best way to do

this is, and the choice of model is often driven by the speci�cs of the

dataset and the application in mind. Previous studies on temperature

modelling suggest that temperature volatility has yearly cycles, simi-

lar to the mean. Benth and �altyt
e-Benth (2005, 2007) calibrate the

truncated Fourier series to the daily temperature residuals. Campbell

and Diebold (2005) propose conditional volatility dynamics for tem-

perature that combines a seasonal component captured by Fourier
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series and a cyclical component captured by a Generalized Autore-

gressive Conditional Heteroskedasticity (GARCH) process. Including

a periodic component in the volatility process seems to be relevant for

meteorological series. However, a very limited number of multivariate

volatility models allow for inclusion of exogenous variables and deter-

ministic terms, mostly due to the excessive parameter restrictions

required to guarantee positive semi-de�niteness of the covariance ma-

trix. In the setup most similar to ours, Caporin et al. (2012) model

conditional variances of power and temperature by long-memory log-

GARCH processes with deterministic components, and model condi-

tional correlations separately. They mention that their approach to

modelling correlations cannot be generalized to systems of a dimen-

sion higher than two.

In this study, we specify the evolution of the full covariance matrix

directly using the multivariate GARCH framework of the Baba-Engle-

Kraft-Kroner (BEKK) type de�ned in Engle and Kroner (1995). Fol-

lowing the multivariate GARCH literature, the vector of model error

terms from Eq. (4.3) is written as:

εt = H
1/2
t zt, (4.6)

where zt is a 3 × 1 vector of independently identically distributed

(i.i.d.) innovations with zero mean and unit variance, and H1/2
t is the

3×3 square root of the conditional covariance matrix, which imposes

the desired dependence structure.

We assume that the conditional covariance matrix Ht follows a

BEKK(1,1) process:

Ht = C ′C +A′εt−1ε
′
t−1A+B′Ht−1B, (4.7)

where A, B, and C are 3×3 parameter matrices, C is lower triangular,

and εt−1 is the 3× 1 vector of innovations in Eq. (4.3).

97



Chapter 4

An important advantage of the BEKK model is that Ht is positive

semi-de�nite by construction. In addition, the o�-diagonal elements

in the A and B matrices have immediate interpretations in terms of

the cross-variable volatility spillover e�ects.4 Due to the nature of

our series, we restrict some of these o�-diagonal elements to zero. In

particular, we rule out any cross-e�ects to the temperature series and

allow temperature, but not power, to a�ect hydrobalance.

3.1.3 Distributional assumptions

We complete the model framework with a speci�cation of the joint

distribution of the i.i.d. innovation vector zt in Eq. (4.6).

Despite the wide acknowledgement that �nancial data series ex-

hibit heavy tails and skewness, the normal distribution is still domi-

nant in the modelling literature for several reasons. First, it is conve-

nient to resort to the asymptotic properties of the Quasi-Maximum

Likelihood (QML) estimator, which is consistent even if the true con-

ditional distribution of innovations is not normal, provided that the

conditional mean and variance models are correctly speci�ed. Second,

the normal distribution often allows for closed-form pricing and hedg-

ing of derivative assets while introducing any non-normal dynamics

requires computationally intensive numerical methods to price even

standard derivatives in most cases.

Temperature series, on the other hand, can be much better ap-

proximated by the normal distribution than any price series. Most

of the temperature modelling papers we referred to (Alaton, 2002;

Brody et al., 2002; Campbell and Diebold, 2005) rely on the nor-

mal distribution assumption for the residuals. However, Benth and

�altyt
e-Benth (2005) show that normality is rejected for some of the

Norwegian temperature data and propose to apply the generalized hy-

4See Chapter 2 Section 3.2 for a more detailed discussion of the BEKK model.
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perbolic distribution family. A closer look at Figure 4.2, which plots

the Swedish temperature series, reveals that extreme deviations from

the seasonal mean are quite common, especially in the winter periods.

Recall that it is those extreme values, and not the average dynamics,

that give rise to excess power demand and are of primary interest for

any risk management or production planning purposes.

Finally, hydrological time series are known to be signi�cantly pos-

itively skewed (see Helsel and Hirsch, 2002), which is also the case

with our hydrobalance data, as con�rmed by Figure 4.5. Considering

all of the arguments above, we suggest using a �exible heavy-tailed

and skewed distribution while keeping the normal distribution as the

benchmark for comparison. The multivariate skew-Student distribu-

tion with independent components of Bauwens and Laurent (2002,

2005) appears to be an excellent choice, since it allows the univariate

marginal distributions to have individual skewness and tail proper-

ties. Furthermore, this distribution is relatively straightforward to

augment with GARCH-type dynamics, as discussed in Chapter 2.

In this study, we specify the multivariate skew-Student distribu-

tion for the vector of standardized innovations zt in Eq. (4.6). Follow-

ing Bauwens and Laurent (2002), a k×1 random vector zt is standard

multivariate skew-Student distributed with independent components

if its probability density function is given by:

f(zt) =

(
2√
π

)k  k∏
i=1

ξisi
1 + ξ2

i

Γ
(
υi+1

2

)
Γ
(
υi
2

)√
υi − 2

(
1 +

κ2
i,t

υi − 2

)− 1+υi
2

 ,
(4.8)

where

κi,t = (sizi,t +mi) ξ
−Ii,t
i , (4.9)
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and

Ii,t =

 1 if zi,t ≥ −mi
si

−1 if zi,t < −mi
si

, (4.10)

with skewness parameters ξ = (ξ1, ..., ξk) and degrees of freedom pa-

rameters υ = (υ1, ..., υk) for υi > 2, and Γ(·) denoting the Gamma

function. The constants mi = mi (ξi, υi) and si = si (ξi, υi) are the

means and standard deviations of the non-standardized skew-Student

density, respectively, de�ned by:

mi (ξi, υi) =
Γ
(
υi−1

2

)√
υi − 2

√
πΓ
(
υi
2

) (
ξi −

1

ξi

)
, (4.11)

s2
i (ξi, υi) =

(
ξ2
i +

1

ξ2
i

− 1

)
−m2

i . (4.12)

ξi = 1 corresponds to the symmetric density, while the thickness of

the tails is decreasing in υi. Note that the standardized multivariate

normal density is the limiting distribution of f(zt) in Eq. (4.8), when

ξi = 1 and υi →∞.

3.2 Model identi�cation and estimation procedure

Long-memory model estimation is a well-addressed area, and many

estimation methods have been proposed in the literature. Most are

based on either a time domain or frequency domain representation

of the density function. The time domain procedures include various

implementations of exact maximum likelihood, such as the Durbin-

Levinson algorithm and state space methods, as well as a number of

approximate likelihood methods based on truncated versions of au-

toregressive and moving average representations of long-memory pro-

cesses (see, e.g., Hasslett and Raftery, 1989). The frequency domain

procedures include Whittle estimators and various semiparametric

methods, and are based in one way or another on the calculation of the

100
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periodogram of the series using Fast Fourier Transform (FFT). These

methods o�er signi�cant computational advantage over the time do-

main methods, but at the cost of lower precision of estimates. In

this study, we estimate all model parameters jointly in the time do-

main using exact maximum likelihood. However, model complexity

requires us to proceed in several steps.

First, we estimate the parameters in Λ1 and Λ2 using the least

squares method. Subtracting these functions from the original power

log-price and temperature observations yields the de-seasonalised se-

ries, which are the input to the next step.

The second step is to get the initial estimates of the fractional dif-

ference parameters. We would like to get a consistent estimate of the

degree of fractional integration in the series without making any prior

assumptions about the short-range properties. This can be achieved

by using a semiparametric estimation method, which does not require

speci�cation of the parametric model and relies only on the assump-

tion about the shape of the spectral density of the time series. The

most common semiparametric methods to estimate long-memory pa-

rameters are local Whittle (see Künsch, 1987, and Robinson, 1995a),

and log-periodogram regression (see Geweke and Porter-Hudak, 1983,

and Robinson, 1995b). However, as Shimotsu and Phillips (2005)

point out, these estimators are inconsistent for d > 1, and discontin-

uous at several points in the non-stationary region, leading to non-

normal limit theory. Instead, they suggest a general purpose semi-

parametric estimator called the exact local Whittle estimator with

well-behaved asymptotic properties in the wide range of stationary

and non-stationary values. We use the exact local Whittle estimator

of Shimotsu and Phillips (2005) to obtain the initial estimates of the

d-parameters.5

5MATLAB code for exact local Whittle estimation is available at Katsumi Shi-
motsu's personal website.
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The third step is to apply the fractional di�erence �lter to the se-

ries and identify the short-range part of the model, that is, the struc-

ture of Φ(L) and Θ(L). Calculating fractional di�erences is in itself a

non-trivial task. Standard implementations of fractional di�erencing

based on the binomial expansion of the di�erence operator have O(n2)

time complexity, which means that the number of operations per-

formed to compute the di�erenced series is a quadratic function of the

input size. This is acceptable if di�erences are only to be computed

once, but makes the joint estimation of all parameters in a trivariate

model with several thousand time series points practically infeasible.

However, Jensen and Nielsen (2013) suggest a fast fractional di�er-

ence algorithm that takes advantage of a frequency-domain transform

of the series. Their algorithm is of O(n log n) time complexity and

o�ers substantial computational advantages. We identify the short-

range dynamics by inspecting the ACFs and PACFs of the di�erenced

series following the standard practice. In addition, we conduct a num-

ber of univariate estimations assuming constant variance and compare

them based on the information criteria.

The �nal step is the joint estimation of all model parameters by

exact maximum likelihood using the parameter estimates from the

previous steps as starting values only.6 We implement this procedure

for the cases of normal distribution and skew-Student distribution,

separately. In the case of normally distributed residuals, the log-

likelihood function is given by the log of the multivariate normal den-

sity function. In the case of the skew-Student distributed residuals,

6Parameters in the seasonal mean functions are not re-estimated to decrease com-
putational time. As starting values for the shape parameters in the skew-Student
distributions, we use ξi = 1 for all skewness parameters and υi = 100 for all kur-
tosis parameters (υi →∞ corresponds to normality).
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the log-likelihood function is given by:

lnL(θ) =
T∑

t=max(p,q)+1

{
ln f(zt)−

1

2
ln |Ht|

}
, (4.13)

where θ is the parameter vector for the full model, f(zt) is the prob-

ability density function in Eq. (4.8), T is the number of time series

observations, and |Ht| denotes the determinant of Ht. Note that the

summation is conditional on the �rst p or q observations, whichever

is larger, owing to the lag order of Φ(L) and Θ(L) in the mean equa-

tions. The second term in the sum in Eq. (4.13) is the Jacobian

correction term arising in the transformation from z to ε. We cal-

culate the square root matrix H1/2
t , which is required to obtain the

vector of standardized residuals zt as given by Eq. (4.6) at each time

point using a standard spectral decomposition. The initial Ht is set

to the sample covariance matrix of the fractionally di�erenced data

and the initial values of the residuals are set to zero.

The log-likelihood function is maximized by simulated annealing,

following Go�e, Ferrier and Rogers (1994). To further increase the

chance of identifying the global optimum, we use consistent QML esti-

mates as starting values for the model with skew-Student distributed

innovations. Finally, we calculate the standard errors of the param-

eters using the outer product gradient method with numerical �rst

derivatives.

4 Results

This section presents the results of model identi�cation and estima-

tion. We start by discussing how we identi�ed the conditional mean

system within our general framework. We then discuss the estimated

parameters. Finally, we examine the model implied second moments
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in light of the �ndings from our preliminary analysis.

4.1 Model identi�cation results

The long-memory parameters are estimated by the exact local Whit-

tle method as follows: 0.6747 for power, 0.2970 for temperature, and

1.1115 for hydrobalance. These results are consistent with the auto-

correlation functions of the non-di�erenced data in Figure 4.4. Speci�-

cally, hydrobalance has the slowest ACF decay, re�ected in the highest

d-parameter, while temperature shows the fastest (yet still hyperbolic)

ACF decay, with the lowest d-parameter. Further, the d-parameter

of temperature lies in the stationary region, while the other two take

values in the non-stationary region. It is worth noting that the d-

parameter of hydrobalance is above one, which means that mean the

reversion property is lost. The implications of this result on the model

simulation will be discussed further.

We proceed to identifying the short-range properties of the con-

ditional mean system. Figure 4.7 displays the autocorrelation and

partial autocorrelation functions of the fractionally di�erenced series.

The 95% white noise con�dence bounds are given by the horizontal

blue lines.

We can see that power has a slight spike in both functions at the

�rst lag, and weekly periodic patterns. One alternative to capture

weekly periodicities is to take seasonal di�erences. However, due to

the presence of non-seasonal fractional di�erencing in our model, we

prefer to include seasonal autoregressive lags instead. Further inves-

tigation in the univariate framework reveals that two weekly seasonal

terms, in addition to the non-seasonal AR(1) term, are su�cient to

whiten the residuals. Moreover, a parsimonious speci�cation with a

single temperature term and a single hydrobalance term in the power

mean equation is preferred based on the information criteria.
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Figure 4.7: Autocorrelation and partial autocorrelation functions after
fractional di�erencing.

Both temperature and hydrobalance show an AR signature, with

ACF decaying gradually and PACF truncated at a certain lag. The

PACF of temperature features three signi�cant lags, while the PACF

of hydrobalance is truncated at the �rst lag. Overall, the inter-

pretation of the functions after appropriate fractional di�erencing is

straightforward, suggesting to model temperature as an AR(3) pro-

cess and hydrobalance as an AR(1) process. We argue that there is no

need to include any moving average terms, thus reducing the general

VARFIMA framework presented in the previous section to its special

case of fractionally integrated vector autoregression. This leads us to
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identify the following conditional mean equation system:

y1,t − φ1
11y1,t−1 − φ7

11y1,t−7 − φ14
11y1,t−14 − φ1

12y2,t−1 − φ1
13y3,t−1 = ε1,t

y2,t − φ1
22y2,t−1 − φ2

22y2,t−2 − φ3
22y2,t−3 = ε2,t

y3,t − φ1
33y3,t−1 = ε3,t

(4.14)

where y1, y2, and y3 denote de-seasonalised fractionally di�erenced

power log-price, de-seasonalised fractionally di�erenced temperature,

and fractionally di�erenced hydrobalance, respectively.

4.2 Estimation results

We �rst comment on the seasonal mean parameter estimates pre-

sented in Table 4.2.

Table 4.2: Seasonal mean parameter estimates.

Power Temperature

λ1,1: constant 3.9575 λ2,1: constant 6.9372

(0.0113) (0.0614)

λ1,2: amplitude 0.1606 λ2,2: amplitude −9.7656
(0.0085) (0.0861)

λ1,3: phase angle 7.9960 λ2,3: phase angle 21.728

(3.1498) (0.5202)

λ1,4: linear trend −0.0003
(0.0000)

λ1,5: non-business days −0.1205
(0.0132)

Note: The table reports the estimated coe�cients and their standard errors (in parenthe-
ses). The seasonal mean functions are given by Eq. (4.1) and Eq. (4.2). All coe�cients
are statistically signi�cant at the 1% level. The R2 values are 0.400 for power and 0.846
for temperature.

We can interpret the parameters λ1,1 and λ2,1 as constant av-

erage levels of power log-price and temperature, respectively. The
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estimated average log-price corresponds to the average price of 52.32

EUR/MWh. The parameters λ1,2 and λ2,2 represent half of the dis-

tance between the peaks and the troughs of the yearly seasonal func-

tions. Thus, the di�erence between the temperature highs and lows

is around 19 degrees Celsius, while the average power price di�erence

between warm and cold seasons is 16.88 EUR/MWh.7 Parameters

λ1,3 and λ2,3 act as time shifts, placing the cosine waves in the cor-

rect phase of power price and temperature yearly cycles. Further, we

report a signi�cant decreasing linear time trend in the power price

series. As mentioned in Section 2, this phenomenon is related to the

changes in the Nordic power generation mix, with a growing share

of load covered by low marginal cost renewable generation sources.

Finally, note the non-trivial e�ect of non-business days, comparable

in magnitude to the amplitude of the yearly cycle.

We estimated the remaining parameters under two distributional

assumptions: the normal distribution, serving as the benchmark case,

and the more �exible skew-Student distribution. Since the two model

speci�cations are not nested, it is not possible to formally test them

against each other using the likelihood ratio test. However, we can

still get an idea of the gain from departing from normality by compar-

ing the starting log-likelihood value of the skew-Student speci�cation,

which is −4559.23, with the �nal log-likelihood value of −3696.94.

Recall that the optimal parameter values from the normal speci�ca-

tion were the starting values for the skew-Student speci�cation, while

the starting values of the ξ- and υ-parameters were set to roughly

correspond to normality.

Table 4.3 presents the estimated values of the parameters from

the stochastic component of the conditional mean system.

7e(3.9575+0.1606) − e(3.9575−0.1606)
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Table 4.3: Stochastic conditional mean parameter estimates.

Normal Skew-Student

Power Temperature Hydrobalance Power Temperature Hydrobalance

d1 0.6963 d2 0.2660 d3 1.2103 d1 0.6445 d2 0.2957 d3 1.1478

(0.0231) (0.0371) (0.0227) (0.0214) (0.0360) (0.0145)

φ1
11 0 .0130 φ1

22 0.8506 φ1
33 0.1351 φ1

11 0.0755 φ1
22 0.8283 φ1

33 0.1596

(0.0290) (0.0411) (0.0280) (0.0278) (0.0394) (0.019)

φ7
11 0.2128 φ2

22 −0.2561 φ7
11 0.2058 φ2

22 -0.2367

(0.0155) (0.0259) (0.0143) (0.0244)

φ14
11 0.1289 φ3

22 0.0629 φ14
11 0.1170 φ3

22 0.0445

(0.0124) (0.0193) (0.0120) (0.0183)

φ1
12 −0.0037 φ1

12 -0.0035

(0.0005) (0.0005)

φ1
13 −0.0153 φ1

13 -0.0126

(0.0014) (0.0015)

Note: The table reports the estimated coe�cients and their standard errors (in paren-
theses). The conditional mean system is given by Eq. (4.3) in the general form for the
original series, and Eq. (4.14) in the restricted form for the de-seasonalised and dif-
ferenced series. Non-signi�cant coe�cients are reported in italics, while the remaining
coe�cients are statistically signi�cant at the 1% level.

The estimates of the memory parameters are very close to the

univariate exact local Whittle estimates discussed earlier. Haldrup

and Nielsen (2006) �nd that the Nordic zonal hourly spot price series

show long memory with d ranging between 0.31 and 0.52. Caporin et

al. (2012) report d-parameters of 0.39 and 0.19 for the Oslo area daily

power and temperature series. We �nd a higher degree of long memory

for both series, with d1 of power being well in the non-stationary

region.

In general, there are no extreme di�erences between the parameter

estimates from the two distributional speci�cations. We can see the

natural trade-o� between the degree of long memory and the mag-

nitude of the non-seasonal autoregressive coe�cients in all the three

series. In particular, a higher estimate of d1 under the normal dis-
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tribution is coupled with a lower and nonsigni�cant φ1
11. The autore-

gressive coe�cients from the temperature mean equation are slightly

lower in magnitude than those reported in Benth, �altyt
e-Benth and

Koekebakker (2008) for the Stockholm temperature series, due to the

presence of the long-memory component in our speci�cation. Further,

we report signi�cant φ7
11 and φ14

11 coe�cients capturing the �rst- and

the second-order weekly seasonal autoregressive patterns in the power

price. Finally, we �nd signi�cant negative temperature and hydrobal-

ance e�ects in the power mean equation, which is in line with our

preliminary analysis.

Table 4.4 presents the estimated values of the conditional covari-

ance and distributional parameters.

We �rst analyse the diagonal coe�cients of A and B-matrices.

Caporin et al. (2012) �nd that temperature has a lower degree of per-

sistence in volatility than power price. According to our results, tem-

perature and hydrobalance volatility have weaker ARCH-e�ects (as

measured by a22 and a33) compared to power price volatility. How-

ever, the GARCH-coe�cient b22 for temperature suggests a higher

degree of persistence in volatility than the corresponding coe�cient

b11 for power. This might be related to the fact that we do not ex-

plicitly model the seasonality in temperature volatility, so part of it

is accommodated by b22. Interestingly, the power GARCH-coe�cient

b11 appears to be lower than the corresponding estimate for the Ger-

man power futures contract reported in Chapter 2.

The majority of the o�-diagonal coe�cients both in A and B-

matrices are statistically signi�cant, which con�rms the existence of

volatility spillover e�ects. There are di�erences, however, in the es-

timates of these e�ects between our two distributional speci�cations.

The normal speci�cation features signi�cant spillovers from tempera-

ture to power volatility, as measured by a12 and b12, and smaller mag-

nitude a13 coe�cient, representing the spillover from hydrobalance to
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power volatility. The skew-Student speci�cation, on the other hand,

results in nonsigni�cant temperature-to-power e�ects, but highly sta-

tistically signi�cant and sizeable hydrobalance-to-power e�ects, as

measured by both a13 and b13.

Table 4.4: Conditional covariance and distributional parameter es-
timates.

Normal Skew-Student

c11 0.0102 c11 0.0153∗∗∗

(0.0134) (0.0017)

c21 −0.0189∗∗∗ c22 0.1169∗∗∗ c21 -0.0069∗∗∗ c22 0.1904∗∗∗

(0.0072) (0.0377) (0.0020) (0.0274)

c31 −0.0076∗∗∗ c32 −0.1312∗∗∗ c33 0.0791∗∗∗ c31 -0.0088∗∗∗ c32 -0.0792∗∗∗ c33 0.0752∗∗∗

(0.0020) (0.0244) (0.0044) (0.0016) (0.0221) (0.0084)

a11 0.5435∗∗∗ a12 −0.5599∗∗ a13 −0.1963∗∗ a11 0.4414∗∗∗ a12 -0.1430 a13 -0.2178∗∗∗

(0.0142) (0.2255) (0.0956) (0.0223) (0.1733) (0.0691)

a22 0.1830∗∗∗ a22 0.1615∗∗∗

(0.0117) (0.0137)

a32 −0.0609∗∗ a33 0.1350∗∗∗ a32 -0.0196 a33 0.1956∗∗∗

(0.0274) (0.0067) (0.0258) (0.0126)

b11 0.8311∗∗∗ b12 0.2075∗ b13 0.0561 b11 0.8786∗∗∗ b12 -0.0272 b13 0.1554∗∗∗

(0.0086) (0.1071) (0.0400) (0.0094) (0.0707) (0.0288)

b22 0.9734∗∗∗ b22 0.9764∗∗∗

(0.0032) (0.0038)

b32 0.0471∗∗∗ b33 0.9829∗∗∗ b32 0.0224∗∗∗ b33 0.9764∗∗∗

(0.0078) (0.0016) (0.0074) (0.0028)

ξ1 0.9843∗∗∗ ξ2 1.0288∗∗∗ ξ3 1.8734∗∗∗

(0.0212) (0.0270) (0.0574)

υ−1
1 0.2598∗∗∗ υ−1

2 0.1351∗∗∗ υ−1
3 0.2569∗∗∗

(0.0168) (0.0218) (0.0198)

Note: The table reports the estimated coe�cients and their standard errors (in paren-
theses). The conditional covariance model is given by Eq. (4.7) and is parameterized by
the 3×3 matrices C,A and B, with typical elements cij , aij , and bij , for i, j = 1 (power),
2 (temperature), and 3 (hydrobalance), respectively. The C-matrix is lower triangular,
while the A and B matrices are restricted such that temperature volatility dynamics is
exogenous, hydrobalance volatility is allowed to be a�ected by temperature but not by
power, while all variables in the system can a�ect power volatility. Skew-Student distri-
butional parameters are reported in the last two rows. Superscripts *, **, and *** denote
statistical signi�cance at the 10%, 5%, and 1% levels, respectively.

We also �nd the b32-coe�cient on temperature-to-hydrobalance

volatility spillover e�ect to be statistically signi�cant at the 1% level
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in both speci�cations. However, its magnitude is much lower than of

the coe�cients capturing spillovers to power. Note that the signs of

the o�-diagonal parameters do not have a straightforward interpreta-

tion because these parameters appear in several non-linear terms de-

termining each element of the conditional covariance matrix at each

time point.

The last two rows in Table 4.4 report the estimates of the skewness

and the inverses of the degrees of freedom parameters.8 Although the

ξ1 of power is below 1, and the ξ2 of temperature is above 1, the

95% con�dence intervals for these parameters leave the question of

asymmetry open, with the lower bound in the negative region and

the upper bound in the positive region. The story is di�erent with

the ξ3 of hydrobalance, which is well in the positive asymmetry re-

gion, as expected. Further, we �nd that power and hydrobalance have

very similar tail properties with υ-parameters close to 4. Tempera-

ture shows less heavy tails with the υ2 estimate of 7.4, although it

still implies a relatively fat-tailed distribution.9 Bauwens and Lau-

rent (2005) report similar degrees of freedom parameter values for the

exchange rate series and several U.S. stocks. Taking another look at

Figure 4.2, we expect that this estimate is mostly driven by the ex-

treme temperature occurrences in winter periods, and this has to be

taken into account in a simulation from the model.

Diagnostic checks of the residuals from both model speci�cations

reveal that we are left with zero-mean uncorrelated noise. Examining

the estimated volatilities and correlations, plotted in Figures 4.8 and

4.9, allows us to further assess the in-sample model performance.

We can see the resemblance between the estimated volatility pro-

cesses and the daily changes series in Figure 4.5. Temperature volatil-

8We estimate υ−1 instead of υ itself for numerical reasons.
9In Chapter 2, we report a common υ estimate of 7.7 for power, gas, coal, and
carbon emission allowances front-year futures log-return series. It is natural that
futures returns, especially in the long-end, show less kurtosis than spot returns.
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ity displays peaks during the winter periods and troughs during the

summer periods. Hydrobalance volatility starts the yearly cycle at

a relatively low level, reaches the minimum around April, and then

takes on an upward trend with a peak in August � September, fol-

lowed by a sharp decline.
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Figure 4.8: Model implied volatilities.

The estimated conditional correlations are well in line with our ex-

pectations. The correlation between power and temperature reaches

the minimum of −0.5 to −0.4 during the winter months, and is

roughly zero during the summer months. The correlation between

power and hydrobalance does not have a pronounced seasonal shape,

and mostly stays in the negative region between −0.5 and 0, oscillat-

ing around the average level of −0.25, with a few extremes.
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Figure 4.9: Model implied correlations.

Finally, there seem to be very minor di�erences between the es-

timated second moments from the two distributional speci�cations.

Hydrobalance volatility and the power/hydrobalance correlations dis-

play more variation under the skew-Student speci�cation. On the rest

of the plots, the red lines and the blue lines coincide almost perfectly.

5 Application: Scenario analysis

This section illustrates how our model can be used to generate a num-

ber of power price scenarios under di�erent hydrological and temper-

ature conditions. We address the issues related to simulation from

the model and present an overview of the simulation results from the

skew-Student speci�cation.

We start the simulation on February 22, 2016 (the day after the
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sample period ends), and �nish on February 28, 2017, yielding a sim-

ulation length of 373 days. We use the last sample values of power

price, temperature, and hydrobalance as the starting points for all

simulated paths. In addition, the estimated conditional covariance

matrix on the last day of the sample period (HT ) and the last values

of the residuals are used to iterate the BEKK process forward. For

each day of the simulation period, we draw the random shocks zt from

the underlying skew-Student distributions using the analytical quan-

tile function.10 Appendix A presents the kernel density estimates of

the random samples drawn from the univariate skew-Student distri-

butions with skewness and degrees of freedom parameters equal to our

estimates. We construct the error terms εt using Eq. (4.6). Next, the

long memory is created by applying numerical fractional integration

of the error term series.11 Further, we follow Eq. (4.14) to generate

the stochastic mean component. Finally, we add the predicted sea-

sonal mean component for power and temperature, and transform the

log-price back to the natural units.

Figures 4.10 � 4.12 show the historical data series starting from

April 27, 2015, followed by ten simulated paths.

A �rst glance at the simulated paths suggests that the model

does a fairly good job of capturing the empirical properties of the

modelled series. It is worth noting that since the extreme power price

and temperature observations are typically observed during the winter

months, we can adjust the random shock generation to re�ect this.

10See Eq. (3.4) for the quantile function of the skew-Student distribution.
11To generate a fractionally integrated process, we approximate the binomial ex-
pansion of (1−L)−d by truncating at 100 terms. The �rst 100 simulated values
use the actual model residuals.
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Figure 4.10: Historical power prices and simulated paths.
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Figure 4.11: Historical temperature and simulated paths.
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We can see in Figure 4.11 that only one temperature path out of

ten produced an outlier during the winter period. However, we can

easily adjust the simulation procedure to increase the likelihood of

outliers occurring in winter, and if necessary, decrease the likelihood

of outliers in other periods.12 Overall, the simulation stage reveals the

true bene�ts of using the skew-Student distribution, since the normal

distribution cannot generate large enough moves frequently enough

to produce realistic behaviour.
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Figure 4.12: Historical hydrobalance and simulated paths.

As Figure 4.12 illustrates, we can generate a wide variety of hy-

drological scenarios. Recall from the discussion of the di�erence pa-

rameter properties that a value of d above 1 corresponds to a non-

stationary case without mean reversion property. This means that

12For instance, this can be done by drawing the quantiles from a distribution
other than uniform while generating the random values from the skew-Student
distribution.
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some of the hydrobalance paths produced by our model will be un-

reasonable, and have to be discarded, which can also be automated

in the simulation by introducing the bounds on how far hydrobalance

can wander away from zero.

A limitation of the model that is more fundamental is that al-

though extreme power price occurrences are likely, there is nothing

in the model enforcing fast mean reversion and enabling spikes to

appear once in a while. On the contrary, the otherwise desirable

long-memory property makes it impossible for a single extreme value

to occur. However, for an application such as meteorological scenario

analysis, this limitation is of minor importance.

Our model creates plenty of interesting opportunities in scenario

analysis. For instance, an average power price can be calculated for

a range of temperature and hydrobalance combinations. This might

be of interest for production planning in power markets with heavy

reliance on hydrological generation, such as the Nordic market. As an

illustration, we simulate 1000 scenarios from the model and calculate

the average power price, temperature, and hydrobalance values for

November 1, 2016 � February 28, 2017, for each scenario. Figure

4.13 plots the average power price and temperature observation pairs

grouped by hydrological conditions. The red dots mark the driest

quarter of scenarios, while the blue crosses mark the wettest quarter.

We omit the observations in the middle of the range.

We can see that, with rare exceptions, the average power price is

higher in dry scenarios, given the same average temperature. Further,

extremely high average power prices tend to occur under a combina-

tion of cold and dry conditions. A similar analysis can be done for

statistics other than the average.
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Figure 4.13: A scenario analysis example.

Another potential application of the model is Monte Carlo pric-

ing of weather derivatives, such as energy quanto contracts. Energy

quanto contracts have a payo� that depends on the product of two

indices: an energy index (e.g., an average power price during the de-

livery period) and a temperature index (e.g., Heating Degree Days,

or HDD). A wide variety of payo� structures is possible for quanto

contracts, such as swap, put/call, collar, and so on. Caporin et al.

(2012) illustrate how their bivariate power-temperature model can be

utilised to price such contracts. Our model can be applied in a simi-

lar fashion, with the additional �exibility of computing `hydrological

bounds' on contract prices.
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6 Summary and conclusions

In this study we propose a model for the joint evolution of spot power

price, temperature, and hydrobalance. Our model successfully cap-

tures most of the discovered empirical features, such as long memory

and heavy tails in all series, yearly seasonal patterns in power price

and temperature, weekly periodic patterns in power price, pronounced

positive skewness in hydrobalance, and time-varying conditional sec-

ond moments. We �nd that in the Nordic market, power price is

inversely related to temperature throughout the year, except for sum-

mer months, when the e�ect is nonsigni�cant. Hydrobalance, on the

other hand, negatively a�ects power price in all periods, since in dry

hydrological conditions, higher marginal cost generation sources set

the price. Further, we con�rm the existence of volatility spillover ef-

fects from temperature and hydrobalance to power. We illustrate how

our model can be used to generate a variety of weather scenarios and

to analyse the implications for power prices. The model is relevant

for power markets with a dominant share of hydrological generation

and provides a wide scope of opportunities for scenario analysis with

relatively little meteorological input.
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Appendix A
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Note: The �gure shows the smooth kernel density estimates of the random samples
drawn from the standard normal distribution and the standardized skew-Student
distribution with ξ and υ parameters equal to our estimates. Each random sample
consists of 1000 values.
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